Welcome![Sign In][Sign Up]
Location:
Downloads SourceCode Mathimatics-Numerical algorithms AI-NN-PR
Title: libORF-master Download
 Description: A machine learning library focused on deep learning.Following algorithms and models are provided along with some static utility classes: - Naive Bayes, Linear Regression, Logistic Regression, Softmax Regression, Linear Support Vector Machine, Non-Linear Support Vector Machine (with RBF kernel), Feed-forward Neural Network, Embedding Neural Network, Convolutional Neural Network, Sparse Autoencoders, Denoising Autoencoders, Contractive Autoencoders, Stacked Sparse Autoencoders, Self-Taught Learner and Restricted Boltzmann Machines are tested with this version. - Rest of the methods are not tested hence not supplied and the progress is as follows: + Deep Belief Nets with Restricted Boltzmann Machines (not tested) + Bayes Nets (tested- refactoring) + Hidden Markov Models (tested- refactoring) + Conditional Random Fields (work in progress)
 Downloaders recently: [More information of uploader zhjhe]
 To Search:
File list (Check if you may need any files):
 

libORF-master
.............\.directory
.............\.gitattributes
.............\.gitignore
.............\@Color
.............\......\Color.m
.............\@ContractiveAutoencoder
.............\.......................\ContractiveAutoencoder.m
.............\.......................\private
.............\.......................\.......\computeNumericalGradient.m
.............\.......................\.......\contractiveAutoencoderCostBGD.m
.............\.......................\.......\contractiveAutoencoderCostSGD.m
.............\.......................\.......\dNonLinearity.m
.............\.......................\.......\nonLinearity.m
.............\@ConvUtils
.............\..........\.svn
.............\..........\....\all-wcprops
.............\..........\....\entries
.............\..........\....\text-base
.............\..........\....\.........\ConvUtils.m.svn-base
.............\..........\ConvUtils.m
.............\..........\private
.............\..........\.......\maxoutFprop.c
.............\..........\.......\maxoutFprop.mexa64
.............\@DenoisingAutoencoder
.............\.....................\DenoisingAutoencoder.m
.............\.....................\private
.............\.....................\.......\computeNumericalGradient.m
.............\.....................\.......\dNonLinearity.m
.............\.....................\.......\denoisingAutoencoderCostBGD.m
.............\.....................\.......\denoisingAutoencoderCostSGD.m
.............\.....................\.......\nonLinearity.m
.............\@Edge
.............\.....\Edge.m
.............\@EmbeddingNeuralNet
.............\...................\EmbeddingNeuralNet.m
.............\...................\private
.............\...................\.......\dNonLinearity.m
.............\...................\.......\embeddingNeuralNetCost.m
.............\...................\.......\feedForwardENN.m
.............\...................\.......\nonLinearity.m
.............\...................\.......\params2stack.m
.............\...................\.......\stack2params.m
.............\@Img
.............\....\Img.m
.............\....\private
.............\....\.......\display_img.m
.............\@LinearRegressor
.............\................\LinearRegressor.m
.............\................\private
.............\................\.......\costFunctionLinRegL2.m
.............\@LinearSVM
.............\..........\.svn
.............\..........\....\all-wcprops
.............\..........\....\entries
.............\..........\....\text-base
.............\..........\....\.........\LinearSVM.m.svn-base
.............\..........\LinearSVM.m
.............\..........\private
.............\..........\.......\.svn
.............\..........\.......\....\all-wcprops
.............\..........\.......\....\entries
.............\..........\.......\....\text-base
.............\..........\.......\....\.........\linearSVMcostL2.m.svn-base
.............\..........\.......\computeNumericalGradient.m
.............\..........\.......\linearSVMcostL2.m
.............\@LogisticRegressor
.............\..................\LogisticRegressor.m
.............\..................\private
.............\..................\.......\costFunction.m
.............\..................\.......\costFunctionLogRegL2.m
.............\@NaiveBayesGM
.............\.............\.svn
.............\.............\....\all-wcprops
.............\.............\....\entries
.............\.............\....\text-base
.............\.............\....\.........\NaiveBayesGM.m.svn-base
.............\.............\NaiveBayesGM.m
.............\@NeuralNet
.............\..........\.svn
.............\..........\....\all-wcprops
.............\..........\....\entries
.............\..........\....\text-base
.............\..........\....\.........\NeuralNet.m.svn-base
.............\..........\NeuralNet.m
.............\..........\private
.............\..........\.......\.svn
.............\..........\.......\....\all-wcprops
.............\..........\.......\....\entries
.............\..........\.......\....\text-base
.............\..........\.......\

CodeBus www.codebus.net