Welcome![Sign In][Sign Up]
Location:
Search - B tree in c

Search list

[ADO-ODBChamsterdb-0.4.4.tar

Description: About: hamsterdb is a database engine written in ANSI C. It supports a B+Tree index structure, uses memory mapped I/O (if available), supports cursors, and can create in-memory databases. Release focus: Major feature enhancements Changes: This release comes with many changes and new features. It can manage multiple databases in one file. A new flag (HAM_LOCK_EXCLUSIVE) places an exclusive lock on the file. hamsterdb was ported to Windows CE, and the Solution file for Visual Studio 2005 now supports builds for x64. Several minor bugs were fixed, performance was improved, and small API changes occurred. Pre-built libraries for Windows (32-bit and 64-bit) are available for download. Author: cruppstahl
Platform: | Size: 477454 | Author: 王磊 | Hits:

[Algorithmhyplas

Description: ************************************************************************ * * * * * THIS IS THE H Y P L A S 2.0 README FILE * * ----------------- * * * * HYPLAS is a finite element program for implicit small and large * * strain analisys of hyperelastic and elasto-plastic two-dimensional * * and axisymmetric solids * * * * HYPLAS v2.0 is the companion software to the textbook: * * EA de Souza Neto, D Peric & DRJ Owen. Computational Methods for * * Plasticity: Theory and Applications. Wiley, Chichester, 2008. * * (www.wiley.com/go/desouzaneto) * * * * Copyright (c) 1998-2008 EA de Souza Neto, D Peric, D.R.J. Owen * *----------------------------------------------------------------------* * File last updated: 18 October 2008 * * * * This file belongs in the directory ../HYPLAS_v2.0 * ************************************************************************ * * * I M P O R T A N T * * * * READ SECTIONS 0 TO 3 OF THIS FILE CAREFULLY BEFORE ATTEMPTING * * TO COMPILE AND RUN THE PROGRAM HYPLAS ON YOUR COMPUTER !! * * * * THE AUTHORS DO NOT GUARANTEE THAT ANY SUGGESTIONS/INSTRUCTIONS * * GIVEN IN THIS README FILE WILL WORK ON ANY PARTICULAR OPERATING * * SYSTEM. IF YOU DECIDE TO FOLLOW ANY SUGGESTIONS/INSTRUCTIONS * * GIVEN HERE YOU MUST DO SO AT YOUR OWN RISK. * * * * * * BUG REPORTS: Please send bug reports to * * * * hyplas_v2.0@live.co.uk * * * * Messages sent to the authors' personal email addresses * * will NOT be answered. * ************************************************************************ This file contains the following sections: 0. Copyright statement and disclaimer 0.(a) Copyright statement 0.(b) Disclaimer 0.(c) Conditions of use 1. Introduction 1.(a) Note on portability 2. Compiling and running HYPLAS 2.(a) Memory requirements 2.(b) Testing a newly compiled executable 3. The HYPLAS directory tree 4. Cross-referencing between the source code and the textbook 5. HYPLAS error messaging 6. Further remarks on HYPLAS ************************************************************************ 0. COPYRIGHT STATEMENT AND DISCLAIMER ================================== 0.(a) Copyright statement ------------------- You may only use this program for your own private purposes. You are not allowed, in any circumstances, to distribute this program (including its source code, executable and any other files related to it, either in their original version or any modifications introduced by you, the authors or any other party) in whole or in part, either freely or otherwise, in any medium, without the prior written consent of the copyright holders. 0.(b) Disclaimer ---------- This program (including its source code, executable and any other files related to it) is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, any implied warranties of fitness for purpose. In particular, THIS PROGRAM IS BY NO MEANS GUARANTEED TO BE FREE FROM ERRORS. This program (or any modification incorporated to it by you, the authors or any other party) will run entirely at your risk. The results produced by this program are in no way guaranteed to be fit for any purpose. Under no circumstances will the authors/copyright holders be liable to anyone for damages, including any general, special, incidental or consequential damages arising from the use or inability to use the program (including, but not limited to, loss or corruption of data, failure of the program to operate in any particular way as well as damages arising from the use of any results produced by the program for any purpose). 0.(c) Conditions of use ----------------- You may only use this program if you fully understand and agree with the terms of the above disclaimer. You must not use this program if you do not agree with or do not understand (fully or in part) these conditions of use. 1. INTRODUCTION ============ HYPLAS is a finite element code for small and large strain analysis of hyperelastic and elasto-plastic solids. Most procedures implemented in HYPLAS are described in detail in its companion textbook: EA de Souza Neto, D Peric & DRJ Owen. Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester, 2008 (www.wiley.com/go/desouzaneto). 1.(a) Note on Portability ------------------- HYPLAS has been written in standard ANSI FORTRAN 77. Currently, the only known (and deliberate) exceptions to the FORTRAN 77 ANSI standard are the instructions: INCLUDE '' used in many routines to include the HYPLAS database files (common blocks and global variables), and; CALL GETENV('HYPLASHOME',HYPLASHOME) used in subroutine "ERRPRT" (file ../HYPLAS_v2.0/src/GENERAL/errprt.f). This instruction inquires the name of the system environment variable HYPLASHOME and writes it on the character string HYPLASHOME. This instruction is NOT part of the ANSI FORTRAN 77 standard, but seems to work in most currently available FORTRAN 77 compilers. 2. COMPILING AND RUNNING H Y P L A S ================================== The HYPLAS source code is stored in directory ../HYPLAS_v2.0/src/ (../HYPLAS_v2.0/ being the current directory) and all its subdirectories. To generate an executable file, you just need to compile the FORTRAN source files: ../HYPLAS_v2.0/src/hyplas.f and ../HYPLAS_v2.0/src/*/*.f together. We recommend that the executable HYPLAS be stored in the directory ../HYPLAS_v2.0/bin to which the environment variable HYPLASHOME should be set (see below how to set a system environmental variable). WINDOWS (R) systems ------------------- On Microsoft Windows(R) systems, HYPLAS has been successfully compiled using Intel Visual Fortran Compiler(R) integrated with Microsoft Visual Studio(R). Here you only need to create a project that contains all Fortran source files mentioned above as well as the include files ..\HYPLAS_v2.0\src\*.INC On a Windows XP system, the system environment variable HYPLASHOME can be set as follows: 1. Open a File Manager 2. Right-click on the "My Computer" icon 3. Select "Properties" on the drop-down menu 4. A new window named "System Properties" will pop-up. Here select the "Advanced" tab. 5. On the "Advanced" tab, click the "Environment Variables" button. 6. A new window titled "Environment Variables" will pop-up. Here click the button "New" in the "System Variables" section of the window. 7. A new window will pop-up titled "New System Variable". Here you should fill the fields "Variable name" and "Variable Value", respectively, with HYPLASHOME and the path name (in full) of the directory ..\HYPLAS_v2.0\bin. 8. Press "OK" on the relevant pop-up windows. 9. The next time the computer is REBOOTED, this variable will be set to the correct path and HYPLAS should be able to find the error messages file ERROR.RUN if required. UNIX/LINUX systems ------------------ In a UNIX/LINUX operating system using a C-shell, for instance, the HYPLASHOME environment variable should be set with the command: setenv HYPLASHOME where here denotes the full path to the directory ../HYPLAS_v2.0/bin. To compile HYPLAS (from directory ../HYPLAS_v2.0/src) with a FORTRAN 77 compiler such as g77, you can use the command: g77 -o ../bin/hyplas hyplas.f */*.f Note that the executable file "hyplas" will be stored in the directory ../HYPLAS_2.0/bin (i.e. the directory set in the HYPLASHOME environment variable). Alternatively, you may use the Makefile provided (with suitable modifications, if needed) to create the HYPLAS executable. IMPORTANT: Before generating a HYPLAS executable, read Sections 2.(a) and 2.(b) below. 2.(a) Memory Requirements ------------------- HYPLAS memory requirements depend on the array dimensioning parameters set in files: ../HYPLAS_v2.0/src/ ELEMENTS.INC GLBDBASE.INC MATERIAL.INC MAXDIM.INC Files ELEMENTS.INC, GLBDBASE.INC and MATERIAL.INC contain parameters which are associated with the currently implemented finite elements and materials. DO NOT MODIFY THEM ! unless you are absolutely sure of what you are doing (only developers coding new elements or new material models/analysis types may need to modify them by changing the existing dimensioning parameters and/or including new parameters). The ONLY dimensioning file that can be safely modified by the average user is the file MAXDIM.INC This file contains the array dimensioning parameters related to the maximum permissible dimension of problems to be analysed by HYPLAS. These parameters include the maximum number of nodes, elements, element groups, etc. If necessary, CHANGE THESE PARAMETERS TO SUIT YOUR PROBLEM SIZE/MEMORY REQUIREMENTS before compiling HYPLAS. 2.(b) Testing a newly compiled executable ----------------------------------- After you have successfully compiled the HYPLAS source code and created an executable file, the next step is to run some tests to verify that HYPLAS is working well. To do this, proceed as follows: The directory ../HYPLAS_v2.0/book_examples/data_files contains a series of data files named .dat of benchmarked examples described in the companion textbook. The corresponding (benchmarked) result files are in the directory ../HYPLAS_v2.0/book_examples/result_files This directory contains a series of result files named .res generated with the current version of HYPLAS on a tested platform. All these files have been named such that their names start with the textbook section number where the corresponding example is described. For instance, files 14_9_2_tresca.dat and 14_9_2_tresca.res refer to a problem described in section 14.9.2 of the textbook, and so on. To check that HYPLAS is working well on your platform, after compiling HYPLAS, run the program HYPLAS for the examples of files .dat and compare the newly generated results .res with their benchmarked counterparts (of the same filename) in the result_files directory. To run an example, execute HYPLAS and use the keyboard to enter the name of the corresponding data file in full (including the extension .dat). To compare the benchmarked .res files against their newly generated you may proceed as follows: 1. On MICROSOFT WINDOWS systems - Here we have successfully used the software "ExamDiff" (the task was made particularly easy by selecting "View" and then the "Show Differences Only" option - this refers to version 1.8 of this software). 2. On UNIX/LINUX systems - Here we use the "diff" command from a shell window (and set the option to ignore blank spaces). A shell script may be used to perform this task automatically (including running HYPLAS and checking for result file differences) for all benchmarked examples provided. IMPORTANT: THE ONLY ACCEPTABLE DIFFERENCES BETWEEN A THE NEWLY GENERATED RESULT FILES AND THEIR BENCHMARKED COUNTERPARTS ARE THE DIMENSIONING PARAMETERS (FROM FILE MAXDIM.INC) USED TO COMPILE THE NEW EXECUTABLE (THESE PARAMETERS ARE PRINTED RIGHT AT THE BEGINNING OF THE RESULT FILES) AND NUMERICAL DIFFERENCES IN RESULTS DUE TO NUMERICAL "ROUNDING-OFF" (THESE ARE VERY SMALL DIFFERENCES THAT DEPEND ON THE PRECISION OF ARITHMETIC OPERATIONS IN THE PLATFORM USED). ALSO NOTE THAT THE EXAMPLES OF THE COMPANION TEXTBOOK DO NOT COVER ALL FEATURES OF HYPLAS. HENCE THIS TEST DOES NOT GUARANTEE THAT EVERYTHING IS WORKING PROPERLY. 3. THE H Y P L A S DIRECTORY TREE ================================ 3.(a) Summary ------- ../ HYPLAS_v2.0/ bin/ book_examples/ data_files/ result_files/ man/ html/ src/ CRYSTAL/ DAMAGE/ DAMAGED_ELASTIC/ DRUCKER_PRAGER/ ELASTIC/ ELEMENTS/ GENERAL/ MATERIALS/ MATHS/ MOHR_COULOMB/ OGDEN/ TRESCA/ VON_MISES/ VON_MISES_MIXED/ 3.(b) Description ----------- The HYPLAS program directory tree is organised as follows: ../HYPLAS_v2.0/ (this directory) This is the HYPLAS root directory, where the HYPLAS directory tree starts. ../HYPLAS_v2.0/bin/ This directory contains the file ERROR.RUN where most HYPLAS error/warning messages are. IMPORTANT: the environment variable HYPLASHOME should be set to this directory. Otherwise, HYPLAS will not find its error/warning messages when required. We also recommend that the EXECUTABLE of HYPLAS be stored in this directory. ../HYPLAS_v2.0/book_examples/ This directory has the following subdirectories: ../HYPLAS_v2.0/book_examples/data_files ../HYPLAS_v2.0/book_examples/result_files Refer to Section 2.(b) above for further details. ../HYPLAS_v2.0/man/ This is the HYPLAS documentation/manuals directory. It contains the following files: input_man.txt - A concise input data manual for HYPLAS in ASCII format; hyplas_calltree.txt - Contains a flowgraph (shows the call tree) of HYPLAS in ASCII-format. Note: calls to function subprograms are not included in this flowgraph; and the subdirectory: ../HYPLAS_v2.0/man/html This directory contains the hypertext (HTML) format Fortran source code and of manual pages of the entire HYPLAS program. Manual pages with descriptions of each function/subprogram including their argument list are linked to their corresponding HTML-format source code. This allows the user the navigate through the HYPLAS source code using a web browser. To start at the main program, use your web browser to open the file hyplas.html. This facility should be helpful to those trying to understand the flow of program HYPLAS. ../HYPLAS_v2.0/src/ This directory (and its subdirectories) contains the Fortran source code of HYPLAS. The files containing the sources are named following the standard practice: .f where is the name of the FORTRAN procedure (subroutine, function subprogram, etc.) whose source code is in file .f. The source code of the HYPLAS main program is in file hyplas.f and the HYPLAS database (COMMON blocks, array dimensioning parameters and other global parameters) is coded in the "include files" ELEMENTS.INC GLDBASE.INC MATERIAL.INC MAXDIM.INC in this directory. In addition, this directory contains a file named "Makefile" (UNIX-LINUX Release only) which may be used for compiling and linking HYPLAS in UNIX/LINUX systems. The subdirectories of ../HYPLAS_v2.0/src are as follows: ../HYPLAS_v2.0/src/CRYSTAL Contains the source code of all procedures related to the finite strain single crystal plasticity model implemented in HYPLAS. ../HYPLAS_v2.0/src/DAMAGE Source files of the procedures related to the Lemaitre ductile damage model implementation. ../HYPLAS_v2.0/src/DAMAGED_ELASTIC Source files of the procedures related to the damaged elasticity model with crack closure effect. ../HYPLAS_v2.0/src/DRUCKER_PRAGER Source files of the procedures related to the implemented Drucker-Prager plasticity model. ../HYPLAS_v2.0/src/ELASTIC Source files of the procedures related to the linear elasticity model (Hencky model under large strains) implemented. ../HYPLAS_v2.0/src/ELEMENTS Source files of the element interfaces and element-related procedures. ../HYPLAS_v2.0/src/GENERAL Source files of general procedures. ../HYPLAS_v2.0/src/MATERIALS Source files of the material interfaces. ../HYPLAS_v2.0/src/MATHS Source files of the mathematical procedures. ../HYPLAS_v2.0/src/MOHR_COULOMB Source files of the procedures related to the implemented Mohr-Coulomb plasticity model. ../HYPLAS_v2.0/src/OGDEN Source files of the procedures related to the implemented Ogden hyperelasticity model. ../HYPLAS_v2.0/src/TRESCA Source files of the procedures related to the implemented Tresca plasticity model. ../HYPLAS_v2.0/src/VON_MISES Source files of the procedures related to the implemented von Mises plasticity model with isotropic hardening. ../HYPLAS_v2.0/src/VON_MISES_MIXED Source files of the procedures related to the implemented von Mises plasticity model with mixed isotropic/kinematic hardening. 4. CROSS-REFERENCING BETWEEN THE SOURCE CODE AND THE TEXTBOOK ========================================================== Many references are made in the textbook to various subprograms of HYPLAS. These are usually made when a particular procedure described in the text is implemented in the program. The reader should refer to the textbook index. Also, a substantial number of comment lines have been added to the source code of HYPLAS with reference to sections, figures, boxes, etc of the textbook related to the part of the code in question. Such references are usually displayed after the word "REFERENCE:" (in capitals) on commented lines. Searching for this word will take you to the line of code where the particular routine has a reference to the textbook. NOTE: Occasional references to other textbooks/journal papers are also made following the word "REFERENCE:" on commented lines. 5. HYPLAS ERROR MESSAGING ====================== Most error/warning messages issued by HYPLAS are in the ASCII-format file ERROR.RUN (kept in the HYPLASHOME directory - ../HYPLAS_v2.0/bin). All such error/warning messages have an identification code (e.g. ED0015) which is printed both to the standard output (this is usually the computer screen) and to the relevant results file. If you wish to find where in the source code a particular message is being issued, then perform a search for the corresponding message identification code in the entire source code of HYPLAS. 6. FURTHER REMARKS ON HYPLAS ========================= 6.(a) Program efficiency THIS SECTION IS OF INTEREST ONLY TO THOSE WANTING TO MAKE HYPLAS RUN FASTER. It is particularly stressed in the textbook that this program has not been designed having efficiency in mind (refer to Section 5.1.2 of the textbook). Its structure has been designed mainly to illustrate in a relatively clear manner the computer implementation of the techniques and algorithms described in the text, with a particular view to the implementation of solid constitutive models and finite elements. For those who are especially interested in the speed of the code, there are a few tips that could help in this direction. Unfortunately, these involve modifications to the source code which is probably most appropriate to readers with a good level of experience in finite element programming. To those with this particular interest, we can suggest the following: (i) The use of faster linear solvers This is probably the change that would result in a greater gain in efficiency. The Frontal Method adopted in subroutine FRONT (file ../HYPLAS_v2.0/src/GENERAL/front.f) has been designed originally to save memory (back in the days when computer memory was severely limited). There are currently a vast number of methodologies which focus on speeding up the linear solution, in addition to reducing memory storage requirements (which is a particularly important issue in the solution of large scale problems). Some of these are extensions/refinements of the original Frontal solver. We remark that a number of such procedures (with their respective source codes) are available (conditions may apply) from the LAPACK (Linear Algebra PACKage - http://www.netlib.org/lapack) repository or from the HSL Library (http://www.cse.cse.scitech.ac.uk/nag/hsl). For the reader interested in gaining speed, we would recommend the replacement of the existing solver of FRONT by a faster one. We remark though that this is a substantial programming task. Another aspect here is the fact that computing times in FRONT are directly linked to the frontwidth of the system which, in the present version of HYPLAS is fixed and depends, for a given mesh, on how the degrees of freedom are numbered (node numbering). The incorporation of a frontwidth optimiser (which re-numbers the degrees of freedom in order to minimise the frontwidth) in FRONT could produce some good savings in computing times. Such savings become particularly noticeable in larger problems where the original node numbering produces an excessively large frontwidth. (ii) Material-specific computations The issues pointed out here affect only the computing times for specific material models and are expected to have a much lower impact in overall speed than the linear solver issue discussed above. Some of the material model-specific computations carried out in HYPLAS could be made a bit faster. For example, for isotropic models whose stress update is carried out in the principal stress space (such as the Tresca and Mohr-Coulomb models - see routines SUTR and SUMC, files ../HYPLAS_v2.0/src/TRESCA/sutr.f and ../HYPLAS_v2.0/MOHR_COULOMB/sumc.f, respectively) the spectral decomposition of the stress in carried out in the state update update routine and then repeated in the corresponding routine for computation of the consistent tangent operator (refer to files ../HYPLAS_v2.0/src/TRESCA/cttr.f and ../HYPLAS_v2.0/src/MOHR_COULOMB/ctmc.f, respectively, for the Tresca and Mohr-Coulomb plasticity models). Some savings in computing time can be achieved here by storing the stress eigenprojection tensors (these can be stored as state variables) during the execution of the state updating and then retrieving them later for use in the computation of the consistent tangent operator. This change can be incorporated to the code relatively easily. The computation of the exponential map and is derivative for the single crystal plasticity model (routines EXPMAP, file ../HYPLAS_v2.0/src/CRYSTAL/expmap.f and DEXPMP, file ../HYPLAS_v2.0/src/CRYSTAL/dexpmp.f) is carried out in three dimensions (these routines have been adapted from an earlier three-dimensional code). To improve efficiency, these can be adapted to work only in two-dimensional problems by removing the unnecessary operations related to the third dimension. 6.(b) Output of nodal averaged values The reader should be aware that the way in which nodal averaged values of stresses and other variables are calculated in HYPLAS is very basic (and rudimentary). This feature of the program is made available only to help those interested in producing contour plots, etc from results presented in HYPLAS result files and should be useful in many circumstances of interest. This facility has in fact been used in producing many of the figures presented in the textbook. But note, for example, that the values of incremental plastic multipliers for plasticity models may take (inadmissible) negative values when extrapolated from Gauss-point to nodes and averaged. We remark that more sophisticated and refined techniques of transferring Gauss point values of variables to nodal points and obtaining the corresponding smoothed field are available in the current literature. These fall outside the scope of the companion textbook of HYPLAS.
Platform: | Size: 11008084 | Author: gtcewli3 | Hits:

[Mathimatics-Numerical algorithmsbplus

Description: 一个简单好用的B+树算法实现- A simple easy to use B tree algorithm realizes
Platform: | Size: 6144 | Author: 站长 | Hits:

[OS program逆波兰表达式

Description: 计算用运算符后缀法表示的表达式的值。后缀表达式也称逆波兰表达式,比中缀表达式计算起来更方便简单些,中缀表达式要计算就存在着括号的匹配问题,所以在计算表达式值时一般都是先转换成后缀表达式,再用后缀法计算表达式的值。如:表达式(a+b*c)/d-e用后缀法表示应为abc*+d/e-。只考虑四则算术运算,且假设输入的操作数均为1位十进制数(0—9),并且输入的后缀形式表达式不含语法错误-calculated Operators suffix France said the value of the expression. Suffix expression also called inverse Poland expression, which is made up of formulas can be more convenient for some simple, ordinary expression to calculate the brackets on the existence of the matching problem, in the calculation of expression values are generally first converted into a suffix expression, reuse suffix calculated the value of the expression. Such as : The expression (a, b* c)/d-e suffix method used to be said for abc* d/e-. Consider only four arithmetic operations and the operation of input assumptions are a few decimal (0-9), and enter the suffix-free form expression syntax errors
Platform: | Size: 1024 | Author: 刘一 | Hits:

[Data structs复件 轮渡问题

Description: 1. 汽车轮渡口,过江渡船每次能载10辆车过江,过江车辆分为客车类和货车类,上渡船有如下规定:同类车先到先上船,客车先于货车上渡船,且每上4辆客车,才允许上一辆货车。若等待客车不足4辆,则从货车代替,若无货车等待允许客车上船。试写一个算法模拟渡口管理。 算法设计: 1客车和货车均建立一个链式队列,初始均为空。以后来一辆车不是货车就是客车,因此可以说整个程序的事件驱动event就是这两个,客车表示1,货车表示0. 2轮船还没有到达时客车和货车均按次序排在各自队列中。 3轮船到达时,根据两个队列的情况,分别处理。处理如下: a 客车数不满4辆,则将排在前面的货车上船,但总数不能超过10,若没有货车等待,客车直接上船。 b 客车数满4,但不满8辆,客车先上,排在前面的只有一辆货车可以上船,若没有货车等待则货车不上。 c 客车满8辆但不满10,客车上船,排在前面的货车最多可以上2辆,但总数不能超过10。 d 客车满10,则全上客车,但总数不能超过10。 -1. I car ferry, crossing the river each ferry can carry 10 cars crossing the river, crossing the river into passenger vehicles and goods category, Ferry on the following provisions : first vehicle in a first embarkation, the first passenger ferry in the truck and four on each passenger will be permitted on a lorry. If waiting for the bus less than four, then replace the truck, without waiting for the lorry to allow passenger embarkation. Try to write a simulated crossing management. Algorithm design : a bus and the truck were established a chain cohort, the initial were empty. Later, a car is not a passenger vehicle is, it can be said of the entire process event-driven event is the two, said a passenger, said the lorry 0. Two ships have not yet arrived at the bus and the truck were ranked
Platform: | Size: 2048 | Author: 西们子 | Hits:

[Compress-Decompress algrithmsLDSToolkit1.1

Description: Lossless Data Compression Toolkit Version 1.1 of the lossless data compression toolkit by Nico deVries. The C sources in this toolkit include an LZW compressor, AR002 archiver, a PPM like compressor using arithmetic compression, Huffman compressor, splay tree program, and LZRW1. Quite a variety. -Lossless Data Compression Toolkit Versio n 1.1 of the lossless data compression toolkit b y Nico deVries. The C sources in this toolkit inc lude an LZW compressor, AR002 archiver. PPM like a compressor using arithmetic compres sion, Huffman compressor, splay tree program, and LZRW1. Quite a variety.
Platform: | Size: 96256 | Author: jason.. | Hits:

[Database systemhamsterdb-0.4.4.tar

Description: About: hamsterdb is a database engine written in ANSI C. It supports a B+Tree index structure, uses memory mapped I/O (if available), supports cursors, and can create in-memory databases. Release focus: Major feature enhancements Changes: This release comes with many changes and new features. It can manage multiple databases in one file. A new flag (HAM_LOCK_EXCLUSIVE) places an exclusive lock on the file. hamsterdb was ported to Windows CE, and the Solution file for Visual Studio 2005 now supports builds for x64. Several minor bugs were fixed, performance was improved, and small API changes occurred. Pre-built libraries for Windows (32-bit and 64-bit) are available for download. Author: cruppstahl
Platform: | Size: 477184 | Author: 王磊 | Hits:

[OtherCB_Tree

Description: 本人早期用c++实现的b树的数据结构实例,在vc2005上调试通过,给大家参考下!-I spent the early c++ Realize the b-tree data structure example, in debugging vc2005 passed, under reference to the U.S.!
Platform: | Size: 578560 | Author: 唐春晖 | Hits:

[DocumentsHuffman-tree

Description: 数据结构 1、算法思路: 哈夫曼树算法:a)根据给定的n个权值{W1,W2… ,Wn }构成 n棵二叉树的集合F={T1,T2…,T n },其中每棵二叉树T中只有一个带权为W i的根结点,其左右子树均空;b)在F中选取两棵根结点的权值最小的树作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为其左、右子树上结点的权值之和;c)F中删除这两棵树,同时将新得到的二叉树加入F中; d)重复b)和c),直到F只含一棵树为止。 -Data Structure 1, Algorithm idea: Huffman tree algorithm: a) in accordance with a given value of n of the right (W1, W2 ..., Wn) constitute a set of n binary tree trees F = (T1, T2 ..., T n) , which for each binary tree T with only one right for the W i of the root node, its about subtree are empty b) in the F 2 in the root node of the right to select the smallest value of the tree as a subtree structure around a new binary tree, binary tree and the new home of the root node of the right value for the left and right sub-tree nodes and the right value c) F in the deletion of the two trees, at the same time obtained by adding a new binary tree F in d) repeat b) and c), until a tree F containing only so far.
Platform: | Size: 28672 | Author: Anson | Hits:

[Database systemBplus

Description: B+树的源代码,c++版,用类实现的。 是许多数据库系统使用的检索系统-B+ tree source code, c++ version, with the class achieved. Database system used in many retrieval systems
Platform: | Size: 315392 | Author: 徐锦来 | Hits:

[source in ebookb_plus_tree

Description: b plus tree in windows c-b plus tree in windows c++
Platform: | Size: 3072 | Author: Jaemin, Yu | Hits:

[Other systemsbtree.tar

Description: Bplus tree implementation in C.
Platform: | Size: 8192 | Author: sumit | Hits:

[Data structsCB-Tree

Description: C++数据结构中经典B-树的构造方法,功能包括初始化、插入、删除、在控制台输出等功能。-C++ data structure in the classic B-tree construction methods, features include initialization, insert, delete, in the console output and other functions.
Platform: | Size: 318464 | Author: 伽蓝听雨 | Hits:

[Data structsB-Tree

Description: This source code in C++, implementing Binary tr-This is source code in C++, implementing Binary tree
Platform: | Size: 2511872 | Author: KR | Hits:

[Data structsC-code

Description: 带有注释的B树的源代码 C语言 能够进行索引-B-tree source code in C can be indexed
Platform: | Size: 20480 | Author: 张宇翔 | Hits:

[Software EngineeringcPP_B-Tree

Description: 用c++写的B树算法。包括插入、删除、查找等,供参考。-Written in c++ B-tree algorithm. Including insert, delete, search for information.
Platform: | Size: 9216 | Author: cherry | Hits:

[Data structsSPECULAR-REFLECTION-OF-A-TREE.cpp

Description: 一棵树的镜面映射指的是对于树中的每个结点,都将其子结点反序。例如,对左边的树,镜面映射后变成右边这棵树。 a a / | \ / | b c f ===> f c b / \ / d e e d 我们在输入输出一棵树的时候,常常会把树转换成对应的二叉树,而且对该二叉树中只有单个子结点的分支结点补充一个虚子结点“$”,形成“伪满二叉树”。 例如,对下图左边的树,得到下图右边的伪满二叉树 a a / | \ / b c f ===> b $ / \ / d e $ c / d f / $ e 然后对这棵二叉树进行前序遍历,如果是内部结点则标记为0,如果是叶结点则标记为1,而且虚结点也输出。 现在我们将一棵树以“伪满二叉树”的形式输入,要求输出这棵树的镜面映射的宽度优先遍历序列。 -A tree mirror mapping refers to each node in the tree, all its child nodes in reverse order. For example, after the tree on the left, to the right of the mirror is mapped into a tree. aa/| \/| \ bcf ===> fcb/\/\ deed us the input and output of a tree when the tree will often be converted into the corresponding binary tree, and a branch of the binary tree, only a single child node add a virtual child node node " $" , the formation of " Manchukuo binary tree." For example, the following figure on the left of the tree to get to the right of the figure below Manchukuo binary aa/| \/\ bcf ===> b $/\/\ de $ c/\ df/\ $ e and then the tree binary tree former preorder, if it is an internal node is labeled 0, if it is a leaf node labeled 1, and virtual nodes are output. Now we will one tree to the " Manchukuo binary" form input, output requirements specular mapping tree breadth-first traversal sequence.
Platform: | Size: 2048 | Author: nature | Hits:

[Data structsbtree

Description: 使用visual studio 2012在C++环境中实现B树的插入,删除等功能-Use visual studio 2012 to achieve B tree in C++ environment to insert, delete, etc.
Platform: | Size: 3072 | Author: 李噹噹 | Hits:

[Data structsC-BTree

Description: C语言实现 B-Tree BPlus_Tr-sample for B-Tree BPlus_Tree in C Lanuange
Platform: | Size: 5120 | Author: lyj | Hits:

[Windows Developb tree

Description: B tree indexing in c++ work on struckt that gave to it and search an index
Platform: | Size: 3072 | Author: farshad36 | Hits:
« 12 3 »

CodeBus www.codebus.net