Description: 1.GeometricContext文件是完成图片中几何方向目标分类。
参考文献《Automatic Photo Pop-up》Hoiem 2005
2 GrabCut文件是完成图像中目标交互式分割
参考文献《“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts》
C. Rother 2004
3 HOG文件是自己编写的根据HOG特征检测行人的matlab代码
4 虹膜识别程序是下载的一个通用的虹膜识别程序,可以运行
5 GML_AdaBoost_Matlab_Toolbox是一个很好用的adaboost matlab工具箱
6 libsvm-mat-2.91-1 是用C编写的改进的SVM程序,代码质量很高,提供了matlab接口
7 SIFT_Matlab 是编写的利用sift特征进行的宽基线匹配,代码质量高
8 FLDfisher 是利用fisher 线性降维方法进行人脸识别-1.GeometricContext file is complete the picture in the geometric direction of target classification. References " Automatic Photo Pop-up" Hoiem 2005 2 GrabCut the target file is an interactive segmentation of image reference " " GrabCut " - Interactive Foreground Extraction using Iterated Graph Cuts" C. Rother 2004 3 HOG documents prepared under their own HOG Characteristics of pedestrian detection matlab code 4 iris recognition process is to download a general iris recognition program, you can run 5 GML_AdaBoost_Matlab_Toolbox is a good use of adaboost matlab toolbox 6 libsvm-mat-2.91-1 is written in C to improve the SVM procedures, code of high quality, provides a matlab interface to 7 SIFT_Matlab is prepared for the use of sift features a wide baseline matching, the code is the use of high quality 8 FLDfisher fisher linear dimension reduction method for face recognition Platform: |
Size: 6918144 |
Author:张数 |
Hits:
Description: 图像的特征用到了Dense Sift,通过Bag of Words词袋模型进行描述,当然一般来说是用训练集的来构建词典,因为我们还没有测试集呢。虽然测试集是你拿来测试的,但是实际应用中谁知道测试的图片是啥,所以构建BoW词典我这里也只用训练集。
其实BoW的思想很简单,虽然很多人也问过我,但是只要理解了如何构建词典以及如何将图像映射到词典维上去就行了,面试中也经常问到我这个问题,不知道你们都怎么用生动形象的语言来描述这个问题?
用BoW描述完图像之后,指的是将训练集以及测试集的图像都用BoW模型描述了,就可以用SVM训练分类模型进行分类了。
在这里除了用SVM的RBF核,还自己定义了一种核: histogram intersection kernel,直方图正交核。因为很多论文说这个核好,并且实验结果很显然。能从理论上证明一下么?通过自定义核也可以了解怎么使用自定义核来用SVM进行分类。-Image features used in a Dense Sift, by the Bag of Words bag model to describe the word, of course, the training set is generally used to build the dictionary, because we do not test set. Although the test set is used as the test you, but who knows the practical application of the test image is valid, so I am here to build BoW dictionary only the training set.
In fact, BoW idea is very simple, although many people have asked me, but as long as you understand how to build a dictionary and how to image map to the dictionary D up on the line, and interviews are often asked me this question, do not know you all how to use vivid language to describe this problem?
After complete description of the image with BoW, refers to the training set and test set of images are described with the BoW model, the training of SVM classification model can be classified.
Apart from having to use the RBF kernel SVM, but also their own definition of a nuclear: histogram intersection kernel, histogram Platform: |
Size: 3585024 |
Author:lipiji |
Hits:
Description: 利用LDA对目标SIFT特征进行降维,实现目标分类-LDA to reduce the dimensionality of the target SIFT features to achieve the target classification Platform: |
Size: 3203072 |
Author:杨贞 |
Hits:
Description: 图像分类程序,此图像分类采用 SIFT + Kmeans 聚类的方法,然后调用 MLP 对其特征进行分类处理,速度实现比较快,正确率高-Image classification procedures, the use of this image classification method SIFT+ Kmeans clustering, and then call the MLP classification of its features, faster speed to achieve the correct rate Platform: |
Size: 10985472 |
Author:guai111 |
Hits:
Description: SIFT等局部特征的词袋模型实现。包括K-means聚类,直方图特征的形成,以及KNN分类。-SIFT local features such as word bag model implementation. Including K-means clustering to form histogram features, and KNN classification. Platform: |
Size: 26533888 |
Author:张志智 |
Hits:
Description: BAG OF WORDS算法应用于图片分类。图像特征用sift算法描述,分类机利用了libsvm方法。-BAG OF WORDS algorithm is applied to image classification. Image features using sift algorithm description, classification machine utilizes libsvm method. Platform: |
Size: 3506176 |
Author:zhouduo JSGIGBE |
Hits:
Description: 常用工具包,特征提取方法,如HOG,sift等特征,分类方法如决策树,svm等(Commonly used toolkits, feature extraction methods, such as HOG, sift and other features, classification methods, such as decision trees, SVM, etc.) Platform: |
Size: 15801344 |
Author:woodi
|
Hits:
Description: Contains three problems - Texture Classification using k means and Laws filters, Vehicle Classification using SIFT and SURF features and BOWs approach and Edge Detection techniques Platform: |
Size: 1382400 |
Author:穿山甲说
|
Hits: