CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - K-medoids
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - K-medoids - List
[
Other resource
]
medoids
DL : 0
一个完整的以类的形式的k-medoids算法-to a complete category in the form of k-medoids algorithm
Date
: 2008-10-13
Size
: 1.4kb
User
:
小朱
[
matlab
]
MyKmeans
DL : 0
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or)
Date
: 2025-07-13
Size
: 1kb
User
:
阿兜
[
matlab
]
DFT分析模拟信号频谱
DL : 0
应用傅里叶变换DFT,分析各种离散信号x(k)的频谱。离散周期信号可以展开成傅里叶级数,所以离散周期信号的频谱 是一个周期的周期性离散频谱,各谱线之间的间隔为 ,而且存在着谐波的关系。 -DFT application of the Fourier transform, analyze discrete signal x (k) of the spectrum. Discrete signal cycle can begin as Fourier series, the discrete signal spectrum is a cyclical cycle of discrete spectrum, the line between the interval, but there is a harmonic relationship.
Date
: 2025-07-13
Size
: 38kb
User
:
殷开
[
GIS program
]
K均值聚类
DL : 0
非监督分类,主要在遥感图象分类处理中有应用-unsupervised classification, mainly in remote sensing image classification application is processed
Date
: 2025-07-13
Size
: 175kb
User
:
hua
[
DSP program
]
rs源程序2
DL : 0
RS(n,k)编解码程序,自己稍稍修改后应用于某工程DSP实现的RS编码的程序!-RS (n, k) codec procedures, their slightly modified for a project of RS DSP coding procedures!
Date
: 2025-07-13
Size
: 13kb
User
:
cdl
[
Other resource
]
Jx_KClustering
DL : 0
K-均值算法图形演示程序,可以设定聚类个数,采用MFC编写,有完善的K-均值类,可以对多维数据进行K-均值处理。-K-means algorithm graphics demo program, the number of clusters can be set using MFC preparation, a comprehensive K-average category, multidimensional data on K-mean treatment.
Date
: 2025-07-13
Size
: 100kb
User
:
[
Special Effects
]
textureA2
DL : 0
本程序在对图像进行纹理分析(由于共发矩阵的方法效果很不好,本程序采用基于频率域的纹理分析算法)的基础上,获取图像不同区域的纹理特征,针对这些纹理特征,采用聚类(K-mean)的分类算法对图像进行区域划分!-procedures in the right image texture analysis (due to a total of hair matrix, the effect is very bad, the program uses a frequency domain based on the texture analysis algorithm), on the basis of access to different regions of the image texture features, these texture characteristics, using clustering (K-mean) the right image classification algorithm for a regional breakdown!
Date
: 2025-07-13
Size
: 296kb
User
:
陈镇静
[
Algorithm
]
KMeansCSharp
DL : 0
k均值聚类的c#版本,我从网上找到的c版本经改造而成-k-means clustering of the c# version, I found from the Internet version of the modified form c
Date
: 2025-07-13
Size
: 2kb
User
:
张恒敢
[
JSP/Java
]
k-means
DL : 0
本代码主要对 K_means 算法用java语言实现 .对需要java kmeans同志很帮助! 并附有测试文件!-This code mainly K_means algorithm using java language. Java kmeans need is to help comrades! With a test file!
Date
: 2025-07-13
Size
: 29kb
User
:
liunengxian
[
JSP/Java
]
apriori
DL : 0
apriori算法的java代码,APRRORI算法使用频繁项性质的先验知识,逐层搜索迭代,用K-项集产生(K+1)-项集。APRRORI算法的一个显著特点是:利用APRIORI性质,压缩了频繁项集,提高了算法的效率。 -apriori algorithm java code, APRRORI algorithm uses the a priori nature of frequent itemsets knowledge, step by step iterative search using K-itemsets generated (K+ 1)- itemsets. APRRORI algorithm A significant feature is: the nature of the use of APRIORI, compression of the frequent itemsets, improve the efficiency of the algorithm.
Date
: 2025-07-13
Size
: 21kb
User
:
xinyuanwo
[
Console
]
Knn
DL : 0
K最近邻分类的代码,附有输入输出和程序使用说明。-K nearest neighbor classification code, with input and output and procedures for use.
Date
: 2025-07-13
Size
: 506kb
User
:
胡芬芬
[
Mathimatics-Numerical algorithms
]
k_means
DL : 0
k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 Matlab 源代码,以兰花数据集作为测试对象。-k-means algorithm to accept input k then n data object is divided into k-clustering in order to make available to the cluster to meet: the same objects in clustering high similarity and objects in different clustering the similarity smaller. Cluster similarity is the use of the clustering of objects by means of a
Date
: 2025-07-13
Size
: 3kb
User
:
烈马
[
Other Databases
]
k-means_cl210447332008
DL : 0
it is Also Kmeans Algorithm in java.
Date
: 2025-07-13
Size
: 53kb
User
:
Naeem Ullah
[
AI-NN-PR
]
dataMining
DL : 0
数据挖掘的软件,集成了关联规则、k-均值聚类、模糊聚类、k-中心点聚类四种算法-software of data mining
Date
: 2025-07-13
Size
: 145kb
User
:
lqinggui
[
Special Effects
]
jpg2ppm
DL : 0
图片格式由jpg转换成ppm, K. MIKOLAJCZYK University of Oxford, OX1 3PJ, Oxford, United Kingdom-Jpg image format conversion to ppm, K. MIKOLAJCZYK University of Oxford, OX1 3PJ, Oxford, United Kingdom
Date
: 2025-07-13
Size
: 3kb
User
:
lrw
[
matlab
]
newkqpso
DL : 0
对k-medoids与qpso结合的算法进行改进。选择调用qpso优化,降低运行时间,提高算法的执行效率。-Pairs of k-medoids algorithm combined with the qpso improvements. Select call qpso optimization, reducing operating time and improve the efficiency of the implementation of the algorithm.
Date
: 2025-07-13
Size
: 2kb
User
:
飞
[
Mathimatics-Numerical algorithms
]
knn
DL : 0
k均值聚类+matlab 有详细的注释和图片-failed to translate
Date
: 2025-07-13
Size
: 409kb
User
:
whnmyt
[
matlab
]
k-medoids
DL : 0
聚类算法中的k-medoids算法,和 k-means 肯定是非常相似的。事实也确实如此,k-medoids 可以算是 k-means 的一个变种。k-medoids 和 k-means 不一样的地方在于中心点的选取,在 k-medoids 算法中,我们将从当前 cluster 中选取这样一个点——它到其他所有(当前 cluster 中的)点的距离之和最小——作为中心点。-Clustering algorithm k-medoids algorithm, and k-means is certainly very similar. The fact is, k-medoids can be regarded as a variant of k-means. k-medoids and k-means not the same place that the center of the selection, in the k-medoids algorithm, we will the current cluster in a point- its distance to all other (current cluster of) the point of and the minimum- as a central point.
Date
: 2025-07-13
Size
: 14kb
User
:
赵小娟
[
Other
]
k-mediod-PAM
DL : 0
k-medoids with matlab is very strong
Date
: 2025-07-13
Size
: 843kb
User
:
akbari1368
[
Other
]
KM
DL : 1
基于k-medoids算法的改进算法,在第五代移动通信中D2D通信中的应用。(The improved algorithm based on k-medoids algorithm is applied to D2D communication in the fifth generation mobile communication.)
Date
: 2025-07-13
Size
: 1kb
User
:
winterisgone
«
1
2
3
4
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.