CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - scheduling ofdma
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - scheduling ofdma - List
[
matlab
]
SHEDULINGALGOofdma
DL : 0
a simple but efficeint scheduling Algorithm in a context ofdma. The idea is to satisfy fairness and the QOS from 2 point of view the first part of sub carrier will be allotted in such way that the flow total of the system is guaranteed and the second part ensures fairness between the users - a simple but efficeint scheduling Algorithm in a context ofdma. The idea is to satisfy fairness and the QOS from 2 point of view the first part of sub carrier will be allotted in such way that the flow total of the system is guaranteed and the second part ensures fairness between the users
Date
: 2025-12-17
Size
: 1kb
User
:
maryam
[
matlab
]
URBANPATHLOSSMODEL
DL : 0
The overall objective for LTE is to provide an extremely high performance radio-access technology that offers full vehicular speed mobility and that can readily coexist with HSPA and earlier networks. OFDM/OFDMA technology is introduced for the LTE downlink, supporting very high data rates of up to 300Mbps while Single-Carrier FDMA (SC-FDMA) is used in the uplink with data rates of 80Mbps possible. Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the -The overall objective for LTE is to provide an extremely high performance radio-access technology that offers full vehicular speed mobility and that can readily coexist with HSPA and earlier networks. OFDM/OFDMA technology is introduced for the LTE downlink, supporting very high data rates of up to 300Mbps while Single-Carrier FDMA (SC-FDMA) is used in the uplink with data rates of 80Mbps possible. Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the
Date
: 2025-12-17
Size
: 3kb
User
:
SREENESH.T.K
[
matlab
]
OKUMURA
DL : 0
mobility and that can readily coexist with HSPA and earlier networks. OFDM/OFDMA technology is introduced for the LTE downlink, supporting very high data rates of up to 300Mbps while Single-Carrier FDMA (SC-FDMA) is used in the uplink with data rates of 80Mbps possible. Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the - mobility and that can readily coexist with HSPA and earlier networks. OFDM/OFDMA technology is introduced for the LTE downlink, supporting very high data rates of up to 300Mbps while Single-Carrier FDMA (SC-FDMA) is used in the uplink with data rates of 80Mbps possible. Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the
Date
: 2025-12-17
Size
: 1kb
User
:
SREENESH.T.K
[
matlab
]
ofdm_without_noise
DL : 0
Technology that offers full vehicular speed mobility and that can readily coexist with HSPA and earlier networks. OFDM/OFDMA technology is introduced for the LTE downlink, supporting very high data rates of up to 300Mbps while Single-Carrier FDMA (SC-FDMA) is used in the uplink with data rates of 80Mbps possible. Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the -Technology that offers full vehicular speed mobility and that can readily coexist with HSPA and earlier networks. OFDM/OFDMA technology is introduced for the LTE downlink, supporting very high data rates of up to 300Mbps while Single-Carrier FDMA (SC-FDMA) is used in the uplink with data rates of 80Mbps possible. Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the
Date
: 2025-12-17
Size
: 1kb
User
:
SREENESH.T.K
[
matlab
]
ofdm_with_noise
DL : 0
Extremely high performance radio-access technology that offers full vehicular speed mobility and that can readily coexist with HSPA and earlier networks. OFDM/OFDMA technology is introduced for the LTE downlink, supporting very high data rates of up to 300Mbps while Single-Carrier FDMA (SC-FDMA) is used in the uplink with data rates of 80Mbps possible. Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the -Extremely high performance radio-access technology that offers full vehicular speed mobility and that can readily coexist with HSPA and earlier networks. OFDM/OFDMA technology is introduced for the LTE downlink, supporting very high data rates of up to 300Mbps while Single-Carrier FDMA (SC-FDMA) is used in the uplink with data rates of 80Mbps possible. Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the
Date
: 2025-12-17
Size
: 1kb
User
:
SREENESH.T.K
[
matlab
]
allthebest
DL : 0
Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the - Additionally, LTE supports operation both in paired and unpaired spectrum (FDD and TDD) using channel bandwidths of approximately 1.4MHz up to 20MHz. The frequency domain scheduling can be done in OFDMA. One of the main challenges in OFDMA is the high peak-to-average radio of the transmitted signal, which requires linearity in the transmitter. The linear amplifiers have low efficiency therefore, OFDMA is not an optimized solution for a mobile uplink where the
Date
: 2025-12-17
Size
: 9kb
User
:
SREENESH.T.K
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.