Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - minimum risk bayes classifier
Search - minimum risk bayes classifier - List
DL : 0
最小错误率和最小风险贝叶斯分类器,附带示例数据-Minimum error rate and minimum risk Bayes classifier, with sample data
Date : 2025-12-18 Size : 3kb User : 胡振

DL : 0
利用贝叶斯实现的分类器小程序,显示出按照最小风险和最小误差分类的结果-Bayesian classifier implemented using a small program to show in accordance with the minimum risk and minimum error classification results
Date : 2025-12-18 Size : 2kb User : haiyang

DL : 0
使用Matlab实现,包括一维特征最小错误率bayes分类器;二维特征最小错误率bayes分类器;二维特征最小风险bayes分类器以及使用的数据集合。-Using the Matlab implementation, including the minimum error rate of one-dimensional characteristics of bayes classifier two-dimensional characteristics of the minimum error rate bayes classifier two-dimensional characteristics of the minimum risk bayes classifier and the use of data collection.
Date : 2025-12-18 Size : 4kb User : 郭鹏宇

基于bayes准则和fisher准则的线性分类器。bayes是对细胞的判别分类 分为最小错误率和最小风险两种;fisher是对两类进行判别-Bayes guidelines and criteria based on fisher linear classifier. bayes classification is divided into cells, determine the minimum error rate and minimal risk of two kinds fisher is to discriminate two types of
Date : 2025-12-18 Size : 4kb User : 小祉

这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。 调用最小风险贝叶斯分类器决策子函数时,根据先验概率,再根据自行给出的5*5的决策表,通过比较概率大小判断一个体重身高二维向量代表的人是男是女,放入决策数组中。 主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小风险贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到在一定先验概率条件下,决策表中不同决策的错误率的统计。 -This is a pattern recognition classifier minimum risk Bayes design .In reference to the case of routine , self- improvement in a certain a priori probability conditions, male , female and total error rate error rate statistics , into which each array . All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions . Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector The third step is the application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function . Bayesian classifier
Date : 2025-12-18 Size : 4kb User : 崔杉

DL : 0
基于正态分布下的最小风险Bayes分类器-Minimum risk Bayes classifier based on normal distribution
Date : 2025-12-18 Size : 1kb User : 蛮荒
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.