CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - local search algorithm
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - local search algorithm - List
[
matlab
]
ZDT4
DL : 0
为了有效地应用遗传算法解决 鲁棒控制系统设计问题,将遗传算法与局部优化方法相结合,提出了基于降维扫描方法的自适应多目标遗传算法(DRSA-MOGA)。通过引入适应度函数标准化方法、基于最优Pareto解集搜索的降维扫描方法和适应度函数自适应调整方法,提高了算法的全局优化性能和局部搜索能力。仿真结果表明,DRSA-MOGA算法在不损失解的均匀度的情况下可以达到很高的逼近度-For effective application of genetic algorithms to solve robust control system design problems, genetic algorithms and local optimization method, based on reduced-order adaptive scanning method multi-objective genetic algorithm (DRSA-MOGA). Fitness function through the introduction of standardized methods, based on the Pareto optimal solution set of search methods and dimensionality reduction scan fitness function adaptive adjustment method, the algorithm improve the performance of global optimization and local search capabilities. The simulation results show that, DRSA-MOGA algorithm solution without loss of uniformity can be achieved under a high degree of approximation
Date
: 2026-01-02
Size
: 14kb
User
:
cekong
[
matlab
]
particle
DL : 0
本代码为经典PSO微粒群算法,通过修改w值,使得PSO的搜索在全局与局部之间得到最优-The code for the classic PSO particle swarm algorithm, by modifying the w value, makes the PSO search between the global and local optimal
Date
: 2026-01-02
Size
: 2kb
User
:
xiongxiong
[
matlab
]
optimaztion
DL : 0
Chapter 8. Numerical Optimization Algorithm 8.1 Golden Search for a Minimum Algorithm 8.2 Nelder-Mead s Minimization Method Algorithm 8.3 Local Minimum Search Using Quadratic Interpolation Algorithm 8.4 Steepest Descent or Gradient Method- Chapter 8. Numerical Optimization Algorithm 8.1 Golden Search for a Minimum Algorithm 8.2 Nelder-Mead s Minimization Method Algorithm 8.3 Local Minimum Search Using Quadratic Interpolation Algorithm 8.4 Steepest Descent or Gradient Method
Date
: 2026-01-02
Size
: 16kb
User
:
Paola de Oliveira
[
matlab
]
GSOaHGSO(matlab)
DL : 0
GSO算法及其改进,其中HGSO是通过与和声搜索算法结合而成,主要用于结构的截面优化、几何优化、动力优化、拓扑优化等,具有收敛速度快,收敛结果好的优点,且其改进算法能摆脱局部最优的缺陷。-GSO algorithm and its improvements, HGSO is through a combination of harmony search algorithm, mainly used to optimize the structure of the cross section, geometry optimization, dynamic optimization, topology optimization, a fast convergence, convergence results is good, and its improved algorithm defects can get rid of local optimum.
Date
: 2026-01-02
Size
: 6kb
User
:
Li
[
matlab
]
Hybrid-ES-Program
DL : 1
针对港口拖轮调度所设计的遗传混合局部搜索算法代码,优化拖轮调度方案,matlab语言编写-Port tugboats are designed for scheduling the genetic code hybrided with local search algorithm to optimize the scheduling program,written by Matlab
Date
: 2026-01-02
Size
: 4kb
User
:
sqq
[
matlab
]
hundunpso
DL : 0
针对二维熵图像分割方法在求取最佳阈值时存在计算量大及微粒群算法容易陷 入局部最优且速度较慢等等问题, 提出了基于混沌粒子群优化算法的二维熵图像分割方法。 该方法考虑了图像中像素点灰度 邻域灰度均值对作为阈值对图像进行分割 利用混沌运 动随机性、遍历性和初值敏感性, 将混沌粒子群优化算法与阈值法相结合在二维空间作全局搜 索。实验结果表明了基于混沌粒子群优化算法的二维熵图像分割法用于阈值寻优减少了搜索 时间, 提高了收敛率。-Calculation of its large capacity and particle swarm algorithm is easy to fall to strike the best threshold for the two-dimensional entropy image segmentation method Into the local optimum and slower, the proposed two-dimensional entropy image segmentation method based on chaotic particle swarm optimization algorithm. The method takes into account the image pixel the gray neighborhood average gray value as a threshold for image segmentation chaotic transport Dynamic randomness, ergodicity and initial value sensitivity of chaotic particle swarm optimization algorithm with the threshold method in two-dimensional space for the global search On request. Experimental results show that the entropy method of image segmentation method based on chaotic particle swarm optimization algorithm for threshold optimization to reduce the search Time and improve the convergence rate.
Date
: 2026-01-02
Size
: 1.74mb
User
:
张泰然
[
matlab
]
Chaotic-Particle-Swarm-Optimization
DL : 1
混沌粒子群优化(CPSO, Chaos Particle Swarm Optimization)算法融合了PSO算法的快收敛和CO算法的遍历随机等特点,在PSO算法每一代挑选出的最优解附近的区域里,用混沌算法进一步搜索,防止其陷入局部最优值,从而改进了PSO算法的不足,成为一种高效的优化算法。-Chaotic Particle Swarm Optimization (CPSO, Chaos Particle Swarm Optimization) algorithm combines the features of the PSO algorithm fast convergence and CO traversal algorithm randomly each generation in the PSO algorithm selected area near the optimal solution, further chaos algorithm search prevent it from falling into local optimal value, thus improving the deficiencies of the PSO algorithm, an efficient optimization algorithm.
Date
: 2026-01-02
Size
: 172kb
User
:
韩晶晶
[
matlab
]
code
DL : 0
Convergence analysis and performance of the extended artificial physics optimization algorithm.artificial physics optimization (EAPO), a population-based, stochastic, evolutionary algorithm (EA) for multidimensional search and optimization. EAPO extends the physicomimetics-based Artificial Physics Optimization (APO) algorithm by including each individual’s best fitness history. Including the history improves EAPO’s search capability compared to APO. EAPO and APO invoke a gravitational metaphor in which the force of gravity may be attractive or repulsive, the aggregate effect of which is to move individuals toward local and global optima. A proof of convergence is presented that reveals the conditions under which EAPO is guaranteed to converge
Date
: 2026-01-02
Size
: 2kb
User
:
sina valizade
[
matlab
]
jinjisoushuo
DL : 0
禁忌搜索是对局部领域搜索的一种扩展,是一种全局逐步寻优算法。搜索过程可以接受劣解,有较强的爬山能力。领域结构对收敛性有很大影响。这个程序的结构简单,为SWAP操作-Tabu Search is an extension of local search field, is a global optimization algorithm gradually. Search process can accept inferior solutions, strong climbing capability. Field structure has a great influence on the convergence. This simple program structure, the SWAP operation
Date
: 2026-01-02
Size
: 2kb
User
:
张行
[
matlab
]
gpso4.2-opt
DL : 0
基于遗传微粒群算法,对旅行商问题求解,采用2-opt进行局部搜索。GPSO4tsp-Genetic particle swarm algorithm for solving the traveling salesman problem, using 2-opt local search. GPSO4tsp
Date
: 2026-01-02
Size
: 918kb
User
:
wuwu
[
matlab
]
PSO
DL : 0
Rosenbrock函数优化属于无约束函数优化问题,其全局极小值位于一条平滑而狭长的抛物线形状的山谷底部,且为优化算法提供的信息很少,因此找到其全局极小值就显得很困难。根据Rosenbrock函数的这种特性,专门提出了一种改进的PSO算法,该算法引入三角函数因子,利用三角函数具有的周期振荡性,使每个粒子获得较强的振荡性,扩大每个粒子的搜索空间,引导粒子向全局极小值附近靠近,避免算法过早地收敛,陷入局部最优,从而找到Rosenbrock函数的全局极小值。大量实验结果表明,该算法具有很好的优化性能,为某些领域某些特定的类似于Rosenbrock函数的优化问题提供了一种新的思路。-Rosenbrock function optimization functions are unconstrained optimization problems, its global minimum value at a smooth parabolic shape and narrow mountain valley Department, and for the optimization algorithm provides little information, and therefore find its global minimum value becomes very difficult. According to this feature Rosenbrock function, specifically mentioning Out an improved PSO algorithm (PSO-R), the algorithm introduced trigonometric factor, using trigonometric has periodic oscillations, so that each particle to obtain more Strong oscillations of expanding the search space of each particle, the particle is close to nearby guide global minimum, avoiding premature convergence algorithm, into a local optimum, thus Finding the global minimum Rosenbrock function. Experimental results show that the algorithm has a good optimizing performance, similar to some certain areas Rosenbrock function in the optimization problem provides a new way of thinking.
Date
: 2026-01-02
Size
: 926kb
User
:
丁晓花
[
matlab
]
Untitled3
DL : 0
人口迁移算法模拟的是社会领域中人口随经济重心而转移、随人口压力增加而扩散的机制,即模拟的是人往高处走、人往富处流,当某个优惠地区的相对人口过剩,人口压力增加时,人们就会迁出该优惠地区去寻找更好更适合自己的优惠地区的这样一种规律。前者促使算法选择较好的区域搜索,后者可在一定程度上避免陷入局部最优点,搜索过程呈现交替进行集中搜索和分散搜索的特点。这体现了人口迁移过程中人口不断聚集和扩散的矛盾运动的特点。后来由我国学者徐宗本给出了人口迁移算法改进的形式。-Population migration algorithm simulates a social field of population with the economic center of gravity shift, and the diffusion mechanism with the population pressure increases, that simulation is downwards, with the flow of people to the rich, when the relative overpopulation of a preferential area when population pressure increases, people will move out of the area to find better deals more suited to their preferential areas such a law. The former is a better choice to promote regional search algorithm, which can avoid local optima to some extent, the search process is presented alternately centralized search and scatter search features. This reflects the demographic characteristics of the population continued to gather during the migration and proliferation of contradictory movement. Later, by Chinese scholars Xuzong this improved algorithm is given in the form of population migration.
Date
: 2026-01-02
Size
: 2kb
User
:
孙金涛
[
matlab
]
Genetic-Algorithm-matlab
DL : 0
遗传算法 ( Genetic Algorithm , GA) 是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法 。与传统的优化算法相比 ,遗传算法具有如下优点 [1 ] :1 ) 不是从单个点 ,而是从多个点构成的群体开始搜索 2) 在搜索最优解过程中 ,只需要由目标函数值转换得来的适应值信息 ,而不需要导数等其它辅助信息 3) 搜索过程不易陷入局部最优点 。 数学建模中常用的matlab算法,遗传算法,内容详细,包括PDF版本的详细的算法实现过程;-Genetic Algorithm (based Algorithm, GA) is using biological natural selection and group evolution mechanism to form a global optimization Algorithm is proposed. Compared with the traditional optimization algorithm, genetic algorithm has the following advantages [1] : 1) is not a single point, but multiple points of groups began to search 2) in the process of searching the optimal solution, only needs to be derived the objective function value of fitness information, without the need for a derivative and other auxiliary information 3) the search process is not easy to fall into local optimal point. Mathematical modeling of the commonly used matlab algorithm, genetic algorithm, and content in detail, including the PDF version of the detailed algorithm implementation process
Date
: 2026-01-02
Size
: 160kb
User
:
刘珅
[
matlab
]
SAPSO
DL : 0
本程序介绍了一种改进的粒子群寻优算法;该算法可以更好的实现粒子群寻优过程中的全局搜索与局部搜索值间的平衡。从而寻得最优结果。-This program introduces an improved particle swarm optimization algorithm This algorithm can better realize the particle swarm optimization in the process of the balance between global search and local search value.To find out the optimal results.
Date
: 2026-01-02
Size
: 1kb
User
:
王义
[
matlab
]
Simulated-annealing-algorithm
DL : 0
模拟退火算法,是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。-Simulated annealing algorithm is a time-varying and ultimately approach zero probability of sudden rebound, which can effectively avoid the local minimum by giving the search process and, ultimately, global optimization algorithm has been optimized serial structure.
Date
: 2026-01-02
Size
: 7kb
User
:
May
[
matlab
]
The-Cuckoo-SearchThe-Cuckoo-Search
DL : 0
布谷鸟搜索(CS)算法是根据生物界中布谷鸟的寄生繁殖机理而提出的一种仿生智能优化算法,由于布谷鸟搜索算法具有优秀的全局搜索和局部搜索能力,并且控制参数少,收敛速度快-The Cuckoo Search (CS) algorithm is a bionic intelligent optimization algorithmbased on the mechanism of biological reproduction in parasitic cuckoo proposed. Dueto the advantages of the excellent global search and local search capabilities, fastconvergence, less control parameters,
Date
: 2026-01-02
Size
: 181kb
User
:
翔子
[
matlab
]
ACATSP
DL : 0
蚁群算法是一种分布式内在并行算法。单个蚂蚁的搜索过程是彼此独 立的,易于局部最优,通过个体间不断的信息交流和传递有利于发现较好解;并且该算法是一种正反馈算法。路径上的信息素浓度较高,将吸引更多的蚂蚁沿这条路径运动,又使得信息素浓度增加,加快了算法的进化过程。本文通过求解TSP问题,通过在特定情况下对路径进行逐步遍历比较来降低陷入局部最优解的可能性, 找出最优解。-Ant colony algorithm is an inherent distributed parallel algorithm. Single ant search process is independent of each other, easy local optimum, through continuous exchange of information between individuals and found in favor of passing a good solution and the algorithm is a positive feedback algorithm. The higher the concentration of the pheromone on the path, it will attract more ants motion along this path, but also makes the pheromone concentration, speed up the evolutionary process of the algorithm. By solving the TSP, under certain circumstances by stepwise traversal path into comparison to reduce the possibility of local optimal solution, to find the optimal solution.
Date
: 2026-01-02
Size
: 2kb
User
:
和数天
[
matlab
]
POS_mod
DL : 0
改进的粒子群算法(PSO)MATLAB源程序m文件,在粒子群算法中引入克隆、选择算子寻求最优解。在同一粒子周围使用克隆选择算子进行多个方向的全局和局部搜索,促使种群中粒子快速进化,较快的得到局部最优和全局最优的位置-Improved particle swarm optimization algorithm (PSO) MATLAB source M files, in the particle swarm optimization algorithm to clone, the operator to find the optimal solution. The global and local search of the multiple directions using clonal selection operator around the same particle, which promotes the rapid evolution of the particles in the population, and get the local optimal and the global optimum.
Date
: 2026-01-02
Size
: 4.49mb
User
:
涂超
[
matlab
]
mianyiyichuan
DL : 0
该算法既保留了遗传算法的搜索特性,又利用了免疫算法的多机制求解多目标函数最优解的自适应特性,在很大程度上避免了“早熟”,收敛于局部极值。 生物体的免疫系统是一个高度进化、复杂的系统,它能自适应地识别和排除入侵肌体的抗原性异物,保护机体免受损害及维持内坏境稳定,并具有学习、记忆和自适应调节的能力。当抗原入侵时,免疫系统通过自体耐受对‘自己’和‘非己’进行识别,并产生最恰当的抗体排除抗原,通过抗体与抗体之间、抗原与抗体之间的相互刺激和抑制关系,降低抗原对免疫细胞的刺激,抑制抗体的过度分化、增殖,保证免疫平衡并维持抗体的多样性。同时在免疫过程中将产生抗体的部分细胞作为记忆细胞保存下来,对于今后侵入的同类抗原,相应的记忆细胞受到激发而产生大量的抗体。为提高生物体的免疫机能,医学上往往根据抗原性异物提取疫苗给生物体接种,接种过的生物体由于免疫细胞预先获得了抗原染色体的特征信息,因而在类似抗原入侵时,能迅速产生亲和度很高的抗体,有效抵御入侵。-The search algorithm only retains the characteristics of genetic algorithms, and use multiple mechanisms of immune algorithm for solving multi-objective characteristics of adaptive optimal solutions, in large part to avoid the " premature" , converge to local minima. Organism' s immune system is a highly evolved, complex system which adaptively identify and remove foreign matter intrusion antigenic body, protecting the body injury and maintain internal stability bad environment, and has learning, memory and adaptive Ability. When the antigen invasion of immune system tolerance to autologous ' own' and ' non-self' to identify and produce the most appropriate antigen antibody excluded by between antibody and antibody, antigen and antibody mutual stimulation and inhibition of the relationship between reduce the antigen to stimulate immune cells, antibodies inhibit excessive differentiation, proliferation, immune balance and ensure the maintenance of antibody dive
Date
: 2026-01-02
Size
: 108kb
User
:
snowtiger
[
matlab
]
应用禁忌搜索算法解决0-1背包问题
DL : 0
利用禁忌搜索算法求解0-1背包问题。禁忌搜索算法相比其他搜索算法更优,设置藐视规则来避免陷入局部最优解。(Solve 0-1 Knapsack Problem based on Tabu search. The tabu search algorithm is superior to other search algorithms and sets contempt rules to avoid falling into local optimal solutions.)
Date
: 2026-01-02
Size
: 83kb
User
:
大白pu
«
1
2
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.