Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - kmeans matlab
Search - kmeans matlab - List
DL : 0
matlab源代码实现快速kmeans聚类
Date : 2010-09-19 Size : 3.9kb User : shiziw369

DL : 0
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or)
Date : Size : 1kb User : 阿兜

DL : 0
一个基于K均值聚类的RBF神经网络,注释写的很明白,有不明白的地方可以发邮件问我。-a K-means clustering based on the RBF neural network, notes written very well, did not understand the local mail can ask me.
Date : Size : 2kb User : bruce

这是一个关于K均值的聚类算法希望对大家有用-This is a study on K-means clustering algorithm to all of us hope that useful
Date : Size : 7kb User : 王林

改进的k均值算法,可以加速运行时间,详见Using the Triangle Inequality to Accelerate k-Means-Improved k-means algorithm, can accelerate the running time, see Using the Triangle Inequality to Accelerate k-Means
Date : Size : 13kb User : xz

DL : 0
cskmeans 聚类算法的一种 1. 分裂法(partitioning methods):给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;
Date : Size : 1kb User : lance

DL : 0
kmeans clustring usw fuk matlab .-kmeans clustring usw fuk matlab .
Date : Size : 2kb User : l

DL : 0
k-meank算法,使用matlab实现,秩序添加一个主函数调用就可以实现,本函数回传会执行结果,使用plot进行绘制。-K-meank algorithm, using MATLAB to achieve, in order to add a main function call can be achieved, the function return will execution results, using the plot is drawn.
Date : Size : 1kb User : ced

DL : 0
通过编写Kmeans算法识别自己的手写数字0——9个数字(Through the preparation of Kmeans algorithm to identify their handwritten numbers 0 - 9 numbers)
Date : Size : 14kb User : 汝汝

umbralizacion, image segmetation
Date : Size : 33kb User : Hgarcia.m

DL : 0
matlab Kmeans算法,matlab聚类算法,接收参数k,返回分类(matlab Kmeans algorithm)
Date : Size : 7.47mb User : squirrel2

DL : 0
%N是数据一共分多少类 %data是输入的不带分类标号的数据 %u是每一类的中心 %re是返回的带分类标号的数据(%N is the number of data in total %data is an input data without a classified label %u is the center of every category %re is the returned data with classified labels)
Date : Size : 1kb User : 辣比小新

吴恩达机器学习课程,第八周作业,详解如何实现PCA以及kmeans(Andrew NG machine learning course, eighth weeks of assignment, detailed how to implement PCA and kmeans)
Date : Size : 11.08mb User : nicos000

DL : 0
kmeans algoritmo for user to use
Date : Size : 90kb User : nieradka

Radial Basis Function Network using K-means algorithm
Date : Size : 23kb User : Bomberino

DL : 0
background subtraction using kmeans and gmm
Date : Size : 7kb User : priya0803

k-means算法实现以及Iris数据集(Implementation of K-means algorithm and Iris data set)
Date : Size : 1kb User : 二胡二胡

matlab实现图像变化检测 分别用kmeans fcm flicm实现图像的变化检测(image change detetion by kmeans,fcm,flicm)
Date : Size : 1.42mb User :

KNN Kmeans RBF Algorithm based on matlab
Date : Size : 506kb User : LIZHAOYANH

该课题为基于kmeans的聚类分割,输入一张彩色图像,可以选择需要分割成多少类,就会以不同颜色区分不同的块,带有GUI界面,操作丰富。(This topic is based on Clustering Segmentation of kmeans. Input a color image, you can choose how many categories you need to segment, and then different blocks will be distinguished with different colors, with GUI interface and rich operation.)
Date : Size : 71kb User : for Matlab
« 1 2 3 4 5 67 8 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.