CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - k-means matlab
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - k-means matlab - List
[
matlab
]
数据挖掘中K均值算法实现
DL : 0
数据挖掘中K均值算法的实现用MATLAB编写-data mining to the K-means algorithm to achieve prepared using MATLAB
Date
: 2025-12-15
Size
: 1kb
User
:
方巍巍
[
matlab
]
MyKmeans
DL : 0
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or)
Date
: 2025-12-15
Size
: 1kb
User
:
阿兜
[
matlab
]
cmeans
DL : 0
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n objects assigned K to 000 category, making such objects within the similarity between the largest category of the similarity between the smallest.
Date
: 2025-12-15
Size
: 1kb
User
:
yili
[
matlab
]
K-Mean1
DL : 0
编写K-均值聚类算法程序,对下图所示数据进行聚类分析(选k=2)-prepare K-means clustering algorithm, the data shown in the chart below cluster analysis (EAC k = 2)
Date
: 2025-12-15
Size
: 119kb
User
:
[
matlab
]
k-means(matlab)
DL : 1
关于k-means聚类算法的MATLAB实现-On the k-means clustering algorithm of MATLAB realize
Date
: 2025-12-15
Size
: 10kb
User
:
chen
[
matlab
]
K_MEANS
DL : 0
K-MEANS算法程序(MATLAB环境)-K-MEANS algorithm procedure (MATLAB environment)
Date
: 2025-12-15
Size
: 1kb
User
:
liuwei
[
matlab
]
mpi_kmeans_
DL : 0
改进的k均值算法,可以加速运行时间,详见Using the Triangle Inequality to Accelerate k-Means-Improved k-means algorithm, can accelerate the running time, see Using the Triangle Inequality to Accelerate k-Means
Date
: 2025-12-15
Size
: 13kb
User
:
xz
[
matlab
]
K-MEANS
DL : 0
基于MATLAB的k-means算法 较好的解决了图像分类聚类的问题-MATLAB based on the k-means algorithm better solved the problem of image classification clustering
Date
: 2025-12-15
Size
: 1kb
User
:
刘小强
[
matlab
]
K-Means
DL : 0
较简单的KMeans聚类算法实现,编程语言matlab-Clustering KMeans relatively simple algorithm, programming language matlab
Date
: 2025-12-15
Size
: 4kb
User
:
tzx
[
matlab
]
K-means_Matlab
DL : 1
K-均值算法的Matlab源代码,比较简短-Matlab source code of K-means algorithm
Date
: 2025-12-15
Size
: 1kb
User
:
luo
[
matlab
]
K-means
DL : 0
k-means算法的实现,实用matlab是实现的,可以用啦做聚类分析-k-means algorithm for the realization of the practical realization of matlab, so you can use cluster analysis
Date
: 2025-12-15
Size
: 50kb
User
:
test
[
matlab
]
K-Means-Color-Reduction
DL : 0
基于K-MEANS的图像退色算法。平台为MATLAB6.5及以上。-Based on the K-MEANS algorithm image fade
Date
: 2025-12-15
Size
: 187kb
User
:
臧超
[
matlab
]
k-means
DL : 0
聚类方法中的K-means实现,用matlab语言实现的聚类-Clustering of K-means implementation of the cluster with matlab language
Date
: 2025-12-15
Size
: 150kb
User
:
收到回复
[
matlab
]
K-MEANS-MATLAB
DL : 0
用matlab7.0编写的k均值算法,参数可调节,很好用-K-MEANS MATLAB
Date
: 2025-12-15
Size
: 19kb
User
:
ghw
[
matlab
]
k-means
DL : 0
k均值,数据已经有了,主要用于分类,美列都是一类数据,只用了其中一部分,数据是自己编的。(K mean, data already exists, mainly for classification, the United States column is a kind of data, only a part of the data is their own series.)
Date
: 2025-12-15
Size
: 8kb
User
:
guanyu
[
matlab
]
1、K-means学习
DL : 0
K-means算法MATLAB仿真,利用一副图像作为数据实现K聚类算法仿真(K-means algorithm, MATLAB simulation)
Date
: 2025-12-15
Size
: 104kb
User
:
casc_zxy
[
matlab
]
k-means-master
DL : 0
K-means算法 matlab 确保运行成功(K-means matlab successful)
Date
: 2025-12-15
Size
: 2kb
User
:
大猩猩97
[
matlab
]
K-means
DL : 0
K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。(The K-means algorithm is a hard clustering algorithm, which is representative of the prototype based objective function clustering method. It is the distance from the data point to the prototype as the objective function of the optimization, and the method of using the function to find the extremum is used to get the adjustment rules of the iterative operation. The K-means algorithm takes Euclidean distance as the similarity measure, it is to find the V optimal classification corresponding to an initial cluster center vector, so that the evaluation index J is the smallest. The error square sum criterion function is used as a clustering criterion function.)
Date
: 2025-12-15
Size
: 1kb
User
:
Daizy7
[
matlab
]
K-means
DL : 0
K-means聚类算法的matlab实现(k-means clustering is a method of vector quantization, originally from signal processing, that is popular for cluster analysis in data mining. k-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells.)
Date
: 2025-12-15
Size
: 1kb
User
:
invoker`Z
[
matlab
]
K-means
DL : 1
k-means算法主程序,已经经过测试,具体参数需要自己调整(K-means algorithm for matlab)
Date
: 2025-12-15
Size
: 1kb
User
:
水蒸汽12345
«
1
2
3
4
5
6
7
8
9
10
...
19
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.