CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - Update
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - Update - List
[
matlab
]
secondwavelet
DL : 0
此程序用提升法实现第二代小波变换 我用的是非整数阶小波变换 采用时域实现,步骤先列后行 正变换:分裂,预测,更新; 反变换:更新,预测,合并 只做一层(可以多层,而且每层的预测和更新方程不同)-procedure used to upgrade Method second generation wavelet transform I use a non-integer-order wavelet transform domain when used, the first step out go backward transformation : split and forecast updates; Anti-Transform : Update, forecasting, consolidations only one (which can be multi-storey, but each floor and update the forecast equation different)
Date
: 2026-01-23
Size
: 1kb
User
:
刘彦平
[
matlab
]
Volterrra_luzhenbo4
DL : 0
更新部分 1、自适应算法采用参考文献[2]的NLMS算法,收敛速度更快,所需训练次数更少。 2、自适应收敛步长在(0,2)之间存在较优取值,Lorenz序列为0.6。-update an adaptive algorithm reference [2] NLMS algorithm, convergence faster, less the number of required training. 2, adaptive step in the convergence of (0,2) between the optimum value, Lorenz sequence of 0.6.
Date
: 2026-01-23
Size
: 11kb
User
:
李晓燕
[
matlab
]
GP_Algorithm_luzhenbo
DL : 0
G-P算法计算关联维的 Matlab 程序 (升级版,mex函数,超快) 作者:陆振波,海军工程大学 欢迎同行来信交流与合作,更多文章与程序下载请访问我的个人主页 电子邮件:luzhenbo@sina.com 个人主页:luzhenbo.88uu.com.cn 更新部分: 引入限制短暂分离参数,使该参数大于序列平均周期时,去除了同一轨道前后点的关联, 使 r 值较小时,ln r - ln C(r) 曲线接近线性 文件夹说明: 1、GP_Algorithm_main.m - 程序主文件 2、LorenzData.dll - 产生Lorenz离散数据 3、normalize_1.m - 数据归一化 4、CorrelationIntegral.dll - 计算关联积分-G-P algorithm in Matlab correlation dimension (upgrade version mex function, ultrafast) Author : bo, the Navy Engineering from the University of peer welcome exchanges and cooperation, more and download articles please visit my personal web page e-mail : luzhenbo@sina.com 000 people Home : luzhenbo.88uu.com.cn update : the introduction of restrictions on temporary separation parameters so that the sequence of parameters than the average cycle, in addition to the same orbit around the point and makes a relatively small r, r ln- ln C (r) curve is nearly linear document folders : 1, GP_Algorithm_main.m-procedure two main documents, LorenzData.dll- Lorenz have three discrete data, normalize_1.m-normalized data of four, CorrelationIntegral.dll-associated integral calculation
Date
: 2026-01-23
Size
: 6kb
User
:
陆振波
[
matlab
]
bpmxor
DL : 0
带动量项的BP算法程序求解XOR问题,权值更新为批处理方式。-driven volume items BP algorithm XOR problem solving process, the right to update the value of the batch mode.
Date
: 2026-01-23
Size
: 1kb
User
:
闰土
[
matlab
]
IncrementalSVM
DL : 0
Incrementally/decrementally update svm. very efficient!-Incrementally/decrementally update svm . very efficient!
Date
: 2026-01-23
Size
: 299kb
User
:
Feng Tang
[
matlab
]
kftool_matlab
DL : 0
卡尔曼滤波工具箱,其中包含有关滤波中预测、更新等子程序-Kalman filter toolbox, which contains information about filtering prediction and update, such as subroutine
Date
: 2026-01-23
Size
: 7kb
User
:
朱胤
[
matlab
]
siyuansu_rungekutta
DL : 0
四元数的隆戈库塔法,利用隆戈库塔队四元数进行更新,可以从中提取出载体姿态信息-Quaternion Longo Kutta method, using Longo Coulthard team quaternion update, can be extracted from vector-profile information
Date
: 2026-01-23
Size
: 1kb
User
:
shangjiang
[
matlab
]
LEGClust-new
DL : 0
LEGClust算法更新,上次上传的代码发现有些问题,现已更正,A Clustering Algorithm Based on Layered Entropic Subgraphs-LEGClust algorithm update, last upload the code found in some of the problems have been corrected, A Clustering Algorithm Based on Layered Entropic Subgraphs
Date
: 2026-01-23
Size
: 3kb
User
:
刘佳
[
matlab
]
the_online_clustering
DL : 0
此文章为基于在线聚类的雷达辐射源分类,它发展了新算法来在线更新分类。内附详细流程图,及功能介绍。可供用matlab做聚类和在线更新的所有人参考。-This article is based on online clustering of Radar Emitter classification, it has developed a new algorithm to update the classification of online. Containing a detailed flow chart, and functions of introduction. Available for use matlab to do clustering and online update of all reference.
Date
: 2026-01-23
Size
: 949kb
User
:
Allen
[
matlab
]
LMS
DL : 0
最小均方(LMS)自适应算法就是一中已期望响应和滤波输出信号之间误差的均方值最小为准的,依据输入信号在迭代过程中估计梯度矢量,并更新权系数以达到最优的自适应迭代算法。LMS算法是一种梯度最速下降方法,其显著的特点是它的简单性。这算法不需要计算相应的相关函数,也不需要进行矩阵运算。-Minimum mean-square (LMS) adaptive algorithm is that one has to respond to the expectations and filtering the output signal of the mean square error between the value of the minimum-based, based on the input signal is estimated in the iterative process of gradient vector, and to update the weights in order to achieve the most Adaptive iterative algorithm gifted. LMS algorithm is a steepest descent gradient method, and its significant features is its simplicity. This algorithm does not require calculation of the corresponding correlation function, nor the need for matrix calculation.
Date
: 2026-01-23
Size
: 3kb
User
:
闫丰
[
matlab
]
NLMS
DL : 0
若不希望用与估计输入信号矢量有关的相关矩阵来加快LMS算法的收敛速度,那么可用变步长方法来缩短其自适应收敛过程,其中一个主要的方法是归一化LMS算法(NLMS算法),变步长 的更新公式可写成 W(n+1)=w(n)+ e(n)x(n) =w(n)+ (3.1) 式中, = e(n)x(n)表示滤波权矢量迭代更新的调整量。为了达到快速收敛的目的,必须合适的选择变步长 的值,一个可能策略是尽可能多地减少瞬时平方误差,即用瞬时平方误差作为均方误差的MSE简单估计,这也是LMS算法的基本思想。 -Want to estimate if the input signal vector and the relevant matrix to speed up the convergence rate of LMS algorithm, then the variable step size method can be used to shorten its adaptive convergence process, one of the main method is normalized LMS algorithm (NLMS algorithm) , variable step-size update formula can be written W (n+ 1) = w (n)+ e (n) x (n) = w (n)+ (3.1) where, = e (n) x (n) the right to express filter update vector iterative adjust the volume. In order to achieve the purpose of fast convergence, we must choose the appropriate value of variable step size, a possible strategy is as much as possible to reduce the instantaneous squared error, which uses the instantaneous squared error as the mean square error MSE of the simple estimate, which is the basic LMS algorithm思想.
Date
: 2026-01-23
Size
: 3kb
User
:
闫丰
[
matlab
]
FTF
DL : 0
该程序是用MATLAB编写的自适应信号处理中的FTF算法.该算法用四个 滤波器来实现对权值的更新-The program is prepared to use MATLAB Adaptive Signal Processing FTF algorithm. The algorithm uses four filters to realize the value of the right to update
Date
: 2026-01-23
Size
: 14kb
User
:
严诚静
[
matlab
]
HHHMT
DL : 0
用MATLAB编写的HMT参数训练的HH子带更新子函数-Prepared using MATLAB Training HMT parameters of the HH sub-band update Functions
Date
: 2026-01-23
Size
: 1kb
User
:
Lisa Gonzalez
[
matlab
]
s174
DL : 0
matlab 设备更新问题,工厂生产设备的维修与更换的最优解,附注释-matlab update equipment, factory equipment maintenance and replacement of the optimal solution, with Notes
Date
: 2026-01-23
Size
: 1kb
User
:
jianglong
[
matlab
]
FCM
DL : 0
Initialize U=[uij] matrix, U(0) At k-step: calculate the centers vectors C(k)=[cj] with U(k)                                 Update U(k) , U(k+1)                                                     If || U(k+1) - U(k)||<     then STOP otherwise return to step 2. - Initialize U=[uij] matrix, U(0) At k-step: calculate the centers vectors C(k)=[cj] with U(k)                                 Update U(k) , U(k+1)                                                     If || U(k+1)- U(k)||<     then STOP otherwise return to step 2.
Date
: 2026-01-23
Size
: 382kb
User
:
魏嘉
[
matlab
]
ConstrKFLinear
DL : 0
kalman filter update equations implemented in this code
Date
: 2026-01-23
Size
: 15kb
User
:
sparh
[
matlab
]
Matlab_update_APA
DL : 0
System identification with adaptive filter using full and partial-update Affine Projection Algorithm
Date
: 2026-01-23
Size
: 6kb
User
:
Peter Tiong
[
matlab
]
Matlab_update_GSDLMS
DL : 0
System identification with adaptive filter using full and partial-update Generalised-Sideband-Decomposition Least-Mean-Squares
Date
: 2026-01-23
Size
: 4kb
User
:
Peter Tiong
[
matlab
]
Matlab_update_NLMS
DL : 0
System identification with adaptive filter using full and partial-update Normalised-Least-Mean-Squares
Date
: 2026-01-23
Size
: 5kb
User
:
Peter Tiong
[
matlab
]
detection
DL : 0
在粒子滤波器框架下,选取区域协方差矩阵特征对运动独立的目标进行描述.-an adaptive template update method base on region covariance descriptor to track the target using particle filter algorithm in a complex circumstance.
Date
: 2026-01-23
Size
: 13kb
User
:
刘茜娅
«
1
2
3
4
5
6
7
8
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.