CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - K-medoids
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - K-medoids - List
[
matlab
]
MyKmeans
DL : 0
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or)
Date
: 2025-12-24
Size
: 1kb
User
:
阿兜
[
matlab
]
DFT分析模拟信号频谱
DL : 0
应用傅里叶变换DFT,分析各种离散信号x(k)的频谱。离散周期信号可以展开成傅里叶级数,所以离散周期信号的频谱 是一个周期的周期性离散频谱,各谱线之间的间隔为 ,而且存在着谐波的关系。 -DFT application of the Fourier transform, analyze discrete signal x (k) of the spectrum. Discrete signal cycle can begin as Fourier series, the discrete signal spectrum is a cyclical cycle of discrete spectrum, the line between the interval, but there is a harmonic relationship.
Date
: 2025-12-24
Size
: 38kb
User
:
殷开
[
matlab
]
K-C
DL : 0
这是一个K中心点聚类算法C实现的,希望对大家有用-K this is a clustering algorithm C to achieve a focal point, and I hope useful for everyone
Date
: 2025-12-24
Size
: 2kb
User
:
黎艺行
[
matlab
]
cskmeans
DL : 0
cskmeans 聚类算法的一种 1. 分裂法(partitioning methods):给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的纪录越远越好。使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;
Date
: 2025-12-24
Size
: 1kb
User
:
lance
[
matlab
]
k_medoids
DL : 0
聚类算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。 这里是MAtlab源代码。-err
Date
: 2025-12-24
Size
: 9kb
User
:
烈马
[
matlab
]
KMedoids
DL : 0
聚类K-Medoids算法。文件里面包含了详细的程序说明和示例。-K-Medoids clustering algorithm.The file contains a detailed description of the procedures and examples.
Date
: 2025-12-24
Size
: 19kb
User
:
[
matlab
]
kMedoids
DL : 2
k-中心聚类算法的matlab实现。直接读取文档数据,没有维限制。-k-Medoids clustering algorithm matlab implementation. Document data read directly, there is no dimension restrictions.
Date
: 2025-12-24
Size
: 2kb
User
:
飞
[
matlab
]
newkqpso
DL : 0
对k-medoids与qpso结合的算法进行改进。选择调用qpso优化,降低运行时间,提高算法的执行效率。-Pairs of k-medoids algorithm combined with the qpso improvements. Select call qpso optimization, reducing operating time and improve the efficiency of the implementation of the algorithm.
Date
: 2025-12-24
Size
: 2kb
User
:
飞
[
matlab
]
k-medoids
DL : 1
k-medoids实现网络社区聚类,含有使用说明书和算法原理-k-medoids clustering for network communities, containing instructions and algorithm theory
Date
: 2025-12-24
Size
: 18kb
User
:
yq
[
matlab
]
kcenters
DL : 0
K中心聚类算法 ,声明:本源程序由网络搜集整理,不承担技术及版权问题!-K center clustering algorithm, the statement: This source collected by the network, does not bear the technical and copyright issues!
Date
: 2025-12-24
Size
: 2kb
User
:
cyz
[
matlab
]
BAMIC
DL : 0
该代码使用BAMIC方法实现数据挖掘中多示例聚类方法来解决分类问题。-BAMIC performs multi-instance clustering by adapting k-medoids algorithm to deal with objects described using bags of instances
Date
: 2025-12-24
Size
: 3kb
User
:
KXJ
[
matlab
]
K-medoids-with-the-analysis-
DL : 0
基于聚类的K中心点算法,附带说明文档,代码简单高效,很好的利用了矩阵的代数运算。数学思想较为高深,但通过仔细研读说明文档和动手操作,matlab数学分析能力可以得到有效的提高-K medoids clustering annotated document, the code is simple and efficient, good use of matrix algebra operations. Mathematical thinking is more profound, but by carefully studying the documentation and hands-on the Matlab mathematical analysis ability can be effective to improve
Date
: 2025-12-24
Size
: 10kb
User
:
菜包
[
matlab
]
kmedoids
DL : 0
matlab 例程,很简单的且很容易理解的k-medoids聚类算法源代码-matlab routines, very simple and very easy to understand k-medoids clustering algorithm source code
Date
: 2025-12-24
Size
: 1kb
User
:
zhangbl
[
matlab
]
awlz_kmedoids
DL : 0
K-Medoids in Matlab 20-K-Medoids in Matlab 2011
Date
: 2025-12-24
Size
: 2kb
User
:
Marc Brauns
[
matlab
]
K-Kmedoids
DL : 0
k -medoids algorithm is a clustering algorithm related to the k -means algorithm and the medoidshift algorithm.
Date
: 2025-12-24
Size
: 51kb
User
:
rasool
[
matlab
]
comparative-study
DL : 0
Comparative Study of K-Means and K-Medoids
Date
: 2025-12-24
Size
: 8kb
User
:
Karthi
[
matlab
]
k-medoids
DL : 0
聚类算法中的k-medoids算法,和 k-means 肯定是非常相似的。事实也确实如此,k-medoids 可以算是 k-means 的一个变种。k-medoids 和 k-means 不一样的地方在于中心点的选取,在 k-medoids 算法中,我们将从当前 cluster 中选取这样一个点——它到其他所有(当前 cluster 中的)点的距离之和最小——作为中心点。-Clustering algorithm k-medoids algorithm, and k-means is certainly very similar. The fact is, k-medoids can be regarded as a variant of k-means. k-medoids and k-means not the same place that the center of the selection, in the k-medoids algorithm, we will the current cluster in a point- its distance to all other (current cluster of) the point of and the minimum- as a central point.
Date
: 2025-12-24
Size
: 14kb
User
:
赵小娟
[
matlab
]
KEMDOID
DL : 0
Source Code of K-Medoids
Date
: 2025-12-24
Size
: 2kb
User
:
Shah
[
matlab
]
101259363Desktop
DL : 0
传统的K-medoids聚类算法的聚类结果随初始中心点的 不同而波动,且计算复杂度较高不适宜处理大规模数据集; 快速K-medoids聚类算法通过选择合适的初始聚类中心改进 了传统K-medoids聚类算法,但是快速K-medoids聚类算法 的初始聚类中心有可能位于同一类簇。为了克服传统的K- medoids聚类算法和快速K-medoids聚类算法的缺陷,提出 一种基于粒计算的K-medoids聚类算法。(The traditional K-medoids clustering algorithm clustering results with different initial center points and volatility, and high computational complexity is not suitable for processing large data sets; K-medoids clustering algorithm by choosing proper initial cluster centers to improve the traditional K-medoids clustering algorithm, but the initial cluster center of K-medoids clustering algorithm can be located in the same cluster. In order to overcome the shortcomings of the traditional K- medoids clustering algorithm and the fast K-medoids clustering algorithm, a K-medoids clustering algorithm based on granular computing is proposed.)
Date
: 2025-12-24
Size
: 2kb
User
:
playboyplay2
[
matlab
]
k-medoids
DL : 0
k-medoids聚类算法对数据进行分类处理(k-medoids Clustering algorithm for data classification)
Date
: 2025-12-24
Size
: 1kb
User
:
丶gorgerous
«
1
2
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.