Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - lms algorithm
Search - lms algorithm - List
DL : 0
vc++实现神经网络的LMS算法,并可以自动选择神经元个数-vc++ LMS neural network algorithm, and can automatically choose Neuron Number
Date : 2026-01-01 Size : 217kb User : WW

DL : 0
自适应滤波的遗传算法算法 自适应滤波的LMS算法-adaptive filtering algorithm GA LMS adaptive filtering algorithm
Date : 2026-01-01 Size : 1kb User : zt

LMS算法用于系统辨识的MATLAB源码-LMS algorithm for system identification MATLAB source
Date : 2026-01-01 Size : 1kb User : liudongyan

这是一个LMS算法!用神经网络改进学习步长!提供一种新的思想解决步长问题!-This is an LMS algorithm! Using neural network to improve the learning step! To provide a new thinking to solve problems step!
Date : 2026-01-01 Size : 917kb User : zay

DL : 0
此程序为本人编写的神经网络法设计1型FIR滤波器的程序,读者读此程序后,可以很深刻地理解如何用BP网络和LMS算法来设计滤波器。 只需更改程序中的H值,即可生成各种低通,高通,带通,带阻滤波器。程序运行结果可得到滤波器系数,幅频曲线和衰减曲线。 可通过更改迭代步长和误差极限来调整滤波器特性。-I prepared for this procedure the neural network type 1 FIR filter design procedures, the reader after reading this program, it is a profound understanding of how to use BP network and the LMS algorithm to design filters. Just change the procedures in H values, to generate a variety of low-pass, high pass, band-pass, band stop filter. Program is running the results of available filter coefficients, amplitude-frequency curve and the attenuation curve. Can change the iteration step size and error to adjust the filter characteristics of the limit.
Date : 2026-01-01 Size : 1kb User : 黄翔东

DL : 0
实现神经网络中的Adaline的LMS算法,分别对正弦信号和三角波信号识别。-Realize the Adaline neural network of the LMS algorithm, respectively, on the sinusoidal signal and triangular wave signal identification.
Date : 2026-01-01 Size : 1kb User : 李娴

LMS-Newton自适应算法源码 反正结果刻与LMS算法相比较,显示了较好的性能。-LMS-Newton adaptive algorithm source code in any case engraved with the LMS algorithm results compared, showing a better performance.
Date : 2026-01-01 Size : 1kb User :

LMS 神经网络算法,一种经典的高效程序-LMS neural network algorithm, a classic high-performance process
Date : 2026-01-01 Size : 1kb User : 单明

LMS-MATLAB最小均方算法的Matlab源程序,模式识别中的分类器-LMS-MATLAB least-mean-square algorithm of Matlab source code, Pattern Recognition Classifier
Date : 2026-01-01 Size : 188kb User : Rock

DL : 0
神经网络中lms算法的matlab实现和在分类中的应用-Lms of neural network algorithm matlab realization and application in the classification
Date : 2026-01-01 Size : 1kb User : 王银

DL : 0
神经网络LMS算法(最速下降法),matlab源程序-neural networl LMS algorithm
Date : 2026-01-01 Size : 1kb User : li bo

DL : 0
关于LMS算法的程序,适用于研究自适应滤波器-LMS algorithm
Date : 2026-01-01 Size : 1kb User : Lu xuan

本文件介绍采用最小均方算法的自适应横向滤波器,pdf文件内含有相应的MATLAB程序及仿真结果等。-This document describes the use of least mean square adaptive transversal filter algorithm, pdf file containing the appropriate procedures and simulation results of MATLAB.
Date : 2026-01-01 Size : 89kb User : mutestome

DL : 0
使用LMS算法实现的自适应滤波器范例,对一个加白噪声的正弦信号滤波。并且比较不同步长的滤波器的迭代次数。-LMS algorithm using adaptive filter example, a sinusoidal signal plus white noise filter. And less synchronized long filter iterations.
Date : 2026-01-01 Size : 1kb User : guochao

DL : 0
LMS算法,实现对自适应谱线增强希望对大家有帮助-LMS ALGORITHM, WISH HELPFUL
Date : 2026-01-01 Size : 1kb User : 刘欢

DL : 0
给出一种LMS算法,即最小均方算法,采用一种特殊的梯度估值,它的显著特点是它的简单性,不需要计算相关函数,也不需要矩阵求逆运算。-Gives a LMS algorithm, least mean square algorithm, using a special gradient estimates, and its distinctive feature is its simplicity, need not calculate the correlation function, does not require matrix inversion.
Date : 2026-01-01 Size : 50kb User : lvxiaoli

DL : 0
《神经网络与机器学习》中的lms算法,自己编写-" Neural networks and machine learning" in the lms algorithm
Date : 2026-01-01 Size : 1kb User : lixx

DL : 0
LMS algorithm for signal processing applications
Date : 2026-01-01 Size : 13kb User : sreddy

神经网络的python实现---LMS算法(Python implementation of ---LMS algorithm for neural networks)
Date : 2026-01-01 Size : 1kb User : 皮皮坤

Python神经网络-LMS算法改进-降低误差率(Improvement of -LMS algorithm for Python neural network)
Date : 2026-01-01 Size : 1kb User : 皮皮坤
« 12 3 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.