CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - Optimization by Simulated Annealing
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Sub Category
Compress-Decompress algrithms
STL
Data structs
Algorithm
AI-NN-PR
matlab
Bio-Recognize
Crypt_Decrypt algrithms
mathematica
Maple
DataMining
Big Data
comsol
physical calculation
chemical calculation
simulation modeling
Search - Optimization by Simulated Annealing - List
[
AI-NN-PR
]
模拟退火源码
DL : 0
模拟退火算法 模拟退火算法(Simulated Annealing,简称SA算法)是模拟加热熔化的金属的退火过程,来寻找全局最优解的有效方法之一。 模拟退火的基本思想和步骤如下: 设S={s1,s2,…,sn}为所有可能的状态所构成的集合, f:S—R为非负代价函数,即优化问题抽象如下: 寻找s*∈S,使得f(s*)=min f(si) 任意si∈S (1)给定一较高初始温度T,随机产生初始状态S (2)按一定方式,对当前状态作随机扰动,产生一个新的状态S’ S’=S+sign(η).δ 其中δ为给定的步长, η为[-1,1]的随机数-simulated annealing algorithm (Simulated Annealing, or SA algorithm) is a simulation of heating molten metal in the annealing process, to find the global optimum one of the effective ways. Simulated Annealing basic ideas and the steps are as follows : S = (s1, s2, ..., sn) for all possible state posed by the pool, f : S-R non-negative cost function, that is abstract optimization problems are as follows : Find S* s, making f (s*) = min f (si) arbitrary si S (1) to set a higher initial temperature T, randomly generated initial state S (2) of a certain form, the current state of random disturbance, have a new state S 'S' = S+ sign (). delta where given for the step, [-1,1] Random Number
Date
: 2026-01-21
Size
: 54kb
User
:
[
AI-NN-PR
]
SAGA
DL : 0
用模拟退火优化遗传算法,使遗传算法具有反向搜索能力,通过仿真表明能够得到更优的值。-Optimization by simulated annealing genetic algorithm, genetic algorithm so that the reverse search capabilities, through the simulation shows that can be better value.
Date
: 2026-01-21
Size
: 12kb
User
:
史峰
[
AI-NN-PR
]
SAPSO
DL : 1
模拟退火-粒子群算法,该程序将模拟退火算法和粒子群算法相结合,对优化参数有很好的效果-Simulated annealing- particle swarm optimization, the program will be simulated annealing algorithm and particle swarm optimization by combining optimization parameters have a good effect
Date
: 2026-01-21
Size
: 1kb
User
:
liwei
[
AI-NN-PR
]
sa-ppt-sample
DL : 0
模拟退火算法最早的思想由Metropolis等(1953)提出,1983年Kirkpatrick等将其应用于组合优化。-Simulated annealing algorithm was first thought by Metropolis et al (1953) suggested that, in 1983, Kirkpatrick and so on will be applied to combinatorial optimization.
Date
: 2026-01-21
Size
: 540kb
User
:
Kevin
[
AI-NN-PR
]
simulated-annealing-algorithm--cPP
DL : 0
模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法-Simulated annealing algorithm is the search process by giving a time-change and ultimately tends to zero the probability of jumps, and thus can effectively avoid falling into local minima and ultimately tends to the global optimum of the serial structure of the optimization algorithm
Date
: 2026-01-21
Size
: 3kb
User
:
shitou
[
AI-NN-PR
]
matlab-accessory_parameter
DL : 0
lingjian.m-----蒙特卡罗方法 lingjian.m使用零件初始值,用蒙特卡罗方法算出总费用。其中使用了自己编制的正态分布随机数发生器产生正态分布随机数。lingjian.m是对蒙特卡罗方法的一次练习。 accyouhua为标定值的函数,而lingjian不是一个函数,在其中已给出了一组标定值的值。 退火确定标定值/unitanneal()----模拟退火 连续型多个变量组合优化问题 这是对模拟退火方法的一次练习,结果证明模拟退火确实是一个行之有效的方法。 当参数选择较好时(一般也伴随着运行时间的加长),模拟退火的结果较好,然而用MATLAB的FMIMCON()一般可达到更高的精度。-lingjian.m---- Monte Carlo method. 氀椀渀最樀椀愀渀.m Part initial value, using the Monte Carlo method to calculate the total cost. The preparation of their own normal distribution random number generator to generate normally distributed random numbers. lingjian.m is the first practice of the Monte Carlo method. accyouhua calibration value the function lingjian not a function, which gives the value of a set of calibration values. Annealing to determine the calibrated value/unitanneal ()---- Simulated Annealing 吀栀攀 continuous multiple variables combinatorial optimization problems 吀栀椀猀 is an exercise of the simulated annealing method, the results show that the simulated annealing is an effective method. 圀栀攀渀 the parameter selection is better (generally accompanied by a longer running time), simulated annealing results, however using MATLAB FMIMCON () generally achieve higher accuracy.
Date
: 2026-01-21
Size
: 4kb
User
:
吴自强
[
AI-NN-PR
]
TSP
DL : 0
TSP问题是一个典型的、容易描述但是难以处理的NP完全问题,同时TSP问题也是诸多领域内出现的多种复杂问题的集中概括和简化形式。目前求解TSP问题的主要方法有启发式搜索法、模拟退火算法、遗传算法、Hopfield神经网络算法、二叉树描述算法。所以,有效解决TSP问题在计算理论上和实际应用上都有很高的价值,而且TSP问题由于其典型性已经成为各种启发式的搜索、优化算法的间接比较标准(如遗传算法、神经网络优化、列表寻优(TABU)法、模拟退火法等)。遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP问题等有着多方面的重要意义。-The TSP The problem is a typical, easy to describe but difficult to handle the NP-complete problem, the TSP many areas centralized summarized and simplified form of a variety of complex issues. The main method of solving TSP heuristic search method, simulated annealing, genetic algorithm, Hopfield neural network algorithm, the binary tree to describe the algorithm. Therefore, an effective solution to the TSP has a very high value in the calculation of the theoretical and practical applications, and TSP problem has become due to its typical variety of heuristic search, optimization of indirect comparison standard (such as genetic algorithms, neural networks optimization list optimization (TABU), simulated annealing, etc.). The genetic algorithm is by its very nature, a robustness to solve complex problems heuristic random search algorithm. Genetic algorithm TSP problem solving aspects of applied research, genetic algorithm framework for constructing a suitable, effective genetic manipul
Date
: 2026-01-21
Size
: 1.22mb
User
:
孟晓龙
[
AI-NN-PR
]
TSP_SA
DL : 0
基于模拟退火算法求解31个城市的TSP问题。通过模拟自然退火的过程,来实现全局的最优化。根据metropolis准则,接受新解。-Based on simulated annealing algorithm 31 cities TSP. By simulating the natural process of annealing to achieve global optimization. According metropolis criteria, accept the new solution.
Date
: 2026-01-21
Size
: 2kb
User
:
张嘉琦
[
AI-NN-PR
]
PSO-Python
DL : 0
粒子群算法,PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。(The particle swarm optimization (PSO) algorithm, which is one of the evolutionary algorithms, is similar to the simulated annealing algorithm. It also starts from the random solution to find the optimal solution by iteration. It also evaluates the quality of the solution by the fitness, but it is more simple than the genetic algorithm rule, and it has no genetic algorithm "Crossover" and "variation". "(Mutation) operation, it seeks the global optimum by following the best value that is currently searched. This algorithm has attracted the attention of the academic community for its advantages of easy realization, high accuracy and fast convergence, and has shown its superiority in solving practical problems. Particle swarm optimization (PSO) is a parallel algorithm.)
Date
: 2026-01-21
Size
: 4kb
User
:
绝情逆空
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.