Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - random matlab
Search - random matlab - List
寻找函数的全局极小值,global minimization of contrast function with random restarts the data are assumed whitened (i.e. with identity covariance matrix). The output is such that Wopt*x are the independent sources.-Find function of the minimum value of the overall situation, global minimization of contrast function with random restarts the data are assumed whitened ( Covariance ie with identity matrix). The out put is such that Wopt* x are the independent sour ces.
Date : 2025-12-18 Size : 1kb User : 李国齐

ER随机图算法,matlab程序,复杂网络仿真-ER random graph algorithms, Matlab procedures, complex network simulation
Date : 2025-12-18 Size : 3kb User : jiangnan

DL : 0
维纳滤波的MATLAB实现,用于随机信号处理的算法演示!-Wiener filter MATLAB for random signal processing algorithm demo!
Date : 2025-12-18 Size : 16kb User : xiaote

匹配滤波的MATLAB实现,用于随机信号处理的算法演示!-matched filtering of MATLAB for random signal processing algorithm demo!
Date : 2025-12-18 Size : 23kb User : xiaote

Matlab codes for financial models
Date : 2025-12-18 Size : 30kb User : 杨海钦

This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters. -This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar-xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
Date : 2025-12-18 Size : 340kb User : 晨间

相位解缠和相位展开matlab程序,里面还包含多篇介绍该相关解缠算法的文章-Phase unwrapping and phase unwrapping matlab program, which also includes more than to introduce the relevant article unwrapping algorithm
Date : 2025-12-18 Size : 3.32mb User : weishunjun

使用Ziggurat算法生成高斯分布的随机数-Gaussian distribution random numbers generator using the Ziggurat lgorithm
Date : 2025-12-18 Size : 1kb User : 海坤

DL : 0
随机信号谱分析技术实现 随机信号谱估计及质量评价。 离散随机信号通过线性时不变系统时,系统所产生的响应。 功率谱估计的实现方法:自相关函数法、周期图法、Bartlett法、Welch法、MTM法、MUSIC法 -Random signal spectral analysis of random signal spectral estimation and quality evaluation. Discrete random signals through linear systems, the system generated response. Realization of the power spectrum estimation: autocorrelation function, periodogram, Bartlett law, Welch method, MTM method, MUSIC method
Date : 2025-12-18 Size : 11kb User : 李倩

几种常用的随机数生成函数的matlab程序-Several commonly used random number generator function of matlab program
Date : 2025-12-18 Size : 5kb User : 云峰

插值 函数逼近 数值微分 数值积分 非线性方程求解 解线性方程组的直接解法 解线性方程组的迭代法 随机数生成 特殊函数计算 常微分方程的初值问题 偏微分方程的数值解法 数据统计和分析-Interpolation function approximation numerical integration of nonlinear differential equations numerical solution of linear equations to solve the direct method of solving linear equations of the iteration calculation of special functions, random number generator initial value problems for ordinary differential equations numerical solution of partial differential equations Statistics and analysis
Date : 2025-12-18 Size : 148kb User : puda

已知二维随机变量(X,Y)的联合概率密度 利用MATLAB的符号运算功能,求待定系数A;P{X>1,Y>2};边缘分布 -Known two-dimensional random variable (X, Y) the joint probability density function using MATLAB' s symbolic computation, seeking undetermined coefficients A P {X> 1, Y> 2} marginal distribution
Date : 2025-12-18 Size : 10kb User : xiaoxia

MCMC,short for Markov Chain Mente Carlo, is a good way for random simulation
Date : 2025-12-18 Size : 6.74mb User : David

谐波叠加法模拟随机风载荷,matlab写的程序,采用三角级数模拟时程风载荷-Superposition of harmonic pseudo random wind loads, matlab written procedures, when using trigonometric series simulate the way the wind load
Date : 2025-12-18 Size : 1kb User : wuzhiwen

EasySolve: 求取线性方程组AX+B=0的一组解,若解唯一则直接返回该解,若解不唯一则从解集中随机返回一组 程序会根据方程信息自动计算返回的解的合适数量级和随机中心的偏移量,使得返回随机解的大小合适于调用它的程序。 OrnoBasis: 根据输入向量的维度,返回该维度下的一组标准正交基底,输入的列向量组中的有效向量(非零、线性无关)会被标准正交化并作为基向量、按旧有顺序排在增补列向量的前边。 RotaObj: 任意维度下(>=2)的点集的保形旋转(不变形的旋转,即n维固体上的点集旋转)。任意维度下(>=2)点集的保形旋转都是点集在平行二维面簇上的旋转,旋转方向改变时,整个平行二维面簇的方向都要改变。由于四维以上空间中无法使用基于视觉的右手螺旋定则,编者建立了旋转台的概念:旋转台是旋转中的一个旋转二位面,表示方法为一个旋转中心和两个线性无关的台面向量(台面向量分前后顺序,台面上从第一个向量到第二个向量的小于pi(3.14)的方向作为旋转的正方向)。该函数调用了OrnoBasis函数。 关于这三个函数的更多参数和返回值的信息,请查看代码文件内头部的说明。 原创,无重复。-EasySolve: Calculating linear equations AX+ B = 0 is a solution, if the only solution is returned directly to the solution, if the solution is not unique the solution set of random returns a set the program will appropriate order information is automatically calculated according to the equation returned Solutions and random center offset, so that the size of the right to return of random solutions to the calling program. OrnoBasis: According to the dimension of the input vector, returns a set of standard orthogonal bases under the dimension column vectors enter a valid vector (nonzero, linearly independent) will be orthonormal basis vectors as, according to the old order row Added column vector in front. RotaObj: Under any dimension conformal (> = 2) point set rotation (no deformation of the rotation, that point on the set of n-dimensional solid rotation). Under any dimension conformal (> = 2) point set point set rotation are rotated in the two-dimensional plane parallel c
Date : 2025-12-18 Size : 3kb User : 曹腾飞

matlab程序,用于生成随机数,里面包含多种生成算法,供大家参考-matlab program for generating random numbers
Date : 2025-12-18 Size : 44kb User : XIAOBAO

matlab实现在随机梯度算法,可以直接使用,里面有现成的代码。-Matlab achieve in the random gradient algorithm can be used directly, there are ready-made code.
Date : 2025-12-18 Size : 1kb User : 吴伍

DL : 0
1.设定种群个体数和需要迭代的次数。 2.选择父代中的个体按照公式z1=sqrt(-2*ln(u1))*sin(2*pi*u2)*m,z2=sqrt(-2*ln(u1))*cos(2*pi*u2)*m进行演化。 这里u1,u2都是随机值,m是控制因子,演化次数越多m,m越小,父代通过与z1,z2相加得到后代。 3.计算后代的适应性。 4.选择后代中最优的适应性作为全局最优适应性。(1. set the number of individuals in the population and the number of iterations required. 2. select the individual in the parent to evolve according to formulas z1=sqrt (-2*ln (U1)), *sin (2*pi*u2), *m, z2=sqrt (-2*ln (U1)), *cos (2*pi*u2), *m. Here, U1, U2 are random values, M is the control factor, the more the number of evolution, m, the smaller the m, the parent by adding Z1, Z2, to get future generations. 3. calculate the adaptability of offspring. 4., choose the best adaptability among the offspring as the global optimum.)
Date : 2025-12-18 Size : 1kb User : Maxxxxx

Algortimo GradienteDescendiente, Algoritmo de Random Walking, Algoritmo de templado simulado
Date : 2025-12-18 Size : 3kb User : jcesarct81

生成大量样本随机数,作图,并计算其样本间间隔(Generate a large number of sample random numbers, plot, and calculate the sample interval)
Date : 2025-12-18 Size : 31kb User : YANGYA
« 12 3 4 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.