Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - feature
Search - feature - List
DL : 11
************************************************************************ * * * * * THIS IS THE H Y P L A S 2.0 README FILE * * ----------------- * * * * HYPLAS is a finite element program for implicit small and large * * strain analisys of hyperelastic and elasto-plastic two-dimensional * * and axisymmetric solids * * * * HYPLAS v2.0 is the companion software to the textbook: * * EA de Souza Neto, D Peric & DRJ Owen. Computational Methods for * * Plasticity: Theory and Applications. Wiley, Chichester, 2008. * * (www.wiley.com/go/desouzaneto) * * * * Copyright (c) 1998-2008 EA de Souza Neto, D Peric, D.R.J. Owen * *----------------------------------------------------------------------* * File last updated: 18 October 2008 * * * * This file belongs in the directory ../HYPLAS_v2.0 * ************************************************************************ * * * I M P O R T A N T * * * * READ SECTIONS 0 TO 3 OF THIS FILE CAREFULLY BEFORE ATTEMPTING * * TO COMPILE AND RUN THE PROGRAM HYPLAS ON YOUR COMPUTER !! * * * * THE AUTHORS DO NOT GUARANTEE THAT ANY SUGGESTIONS/INSTRUCTIONS * * GIVEN IN THIS README FILE WILL WORK ON ANY PARTICULAR OPERATING * * SYSTEM. IF YOU DECIDE TO FOLLOW ANY SUGGESTIONS/INSTRUCTIONS * * GIVEN HERE YOU MUST DO SO AT YOUR OWN RISK. * * * * * * BUG REPORTS: Please send bug reports to * * * * hyplas_v2.0@live.co.uk * * * * Messages sent to the authors' personal email addresses * * will NOT be answered. * ************************************************************************ This file contains the following sections: 0. Copyright statement and disclaimer 0.(a) Copyright statement 0.(b) Disclaimer 0.(c) Conditions of use 1. Introduction 1.(a) Note on portability 2. Compiling and running HYPLAS 2.(a) Memory requirements 2.(b) Testing a newly compiled executable 3. The HYPLAS directory tree 4. Cross-referencing between the source code and the textbook 5. HYPLAS error messaging 6. Further remarks on HYPLAS ************************************************************************ 0. COPYRIGHT STATEMENT AND DISCLAIMER ================================== 0.(a) Copyright statement ------------------- You may only use this program for your own private purposes. You are not allowed, in any circumstances, to distribute this program (including its source code, executable and any other files related to it, either in their original version or any modifications introduced by you, the authors or any other party) in whole or in part, either freely or otherwise, in any medium, without the prior written consent of the copyright holders. 0.(b) Disclaimer ---------- This program (including its source code, executable and any other files related to it) is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, any implied warranties of fitness for purpose. In particular, THIS PROGRAM IS BY NO MEANS GUARANTEED TO BE FREE FROM ERRORS. This program (or any modification incorporated to it by you, the authors or any other party) will run entirely at your risk. The results produced by this program are in no way guaranteed to be fit for any purpose. Under no circumstances will the authors/copyright holders be liable to anyone for damages, including any general, special, incidental or consequential damages arising from the use or inability to use the program (including, but not limited to, loss or corruption of data, failure of the program to operate in any particular way as well as damages arising from the use of any results produced by the program for any purpose). 0.(c) Conditions of use ----------------- You may only use this program if you fully understand and agree with the terms of the above disclaimer. You must not use this program if you do not agree with or do not understand (fully or in part) these conditions of use. 1. INTRODUCTION ============ HYPLAS is a finite element code for small and large strain analysis of hyperelastic and elasto-plastic solids. Most procedures implemented in HYPLAS are described in detail in its companion textbook: EA de Souza Neto, D Peric & DRJ Owen. Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester, 2008 (www.wiley.com/go/desouzaneto). 1.(a) Note on Portability ------------------- HYPLAS has been written in standard ANSI FORTRAN 77. Currently, the only known (and deliberate) exceptions to the FORTRAN 77 ANSI standard are the instructions: INCLUDE '' used in many routines to include the HYPLAS database files (common blocks and global variables), and; CALL GETENV('HYPLASHOME',HYPLASHOME) used in subroutine "ERRPRT" (file ../HYPLAS_v2.0/src/GENERAL/errprt.f). This instruction inquires the name of the system environment variable HYPLASHOME and writes it on the character string HYPLASHOME. This instruction is NOT part of the ANSI FORTRAN 77 standard, but seems to work in most currently available FORTRAN 77 compilers. 2. COMPILING AND RUNNING H Y P L A S ================================== The HYPLAS source code is stored in directory ../HYPLAS_v2.0/src/ (../HYPLAS_v2.0/ being the current directory) and all its subdirectories. To generate an executable file, you just need to compile the FORTRAN source files: ../HYPLAS_v2.0/src/hyplas.f and ../HYPLAS_v2.0/src/*/*.f together. We recommend that the executable HYPLAS be stored in the directory ../HYPLAS_v2.0/bin to which the environment variable HYPLASHOME should be set (see below how to set a system environmental variable). WINDOWS (R) systems ------------------- On Microsoft Windows(R) systems, HYPLAS has been successfully compiled using Intel Visual Fortran Compiler(R) integrated with Microsoft Visual Studio(R). Here you only need to create a project that contains all Fortran source files mentioned above as well as the include files ..\HYPLAS_v2.0\src\*.INC On a Windows XP system, the system environment variable HYPLASHOME can be set as follows: 1. Open a File Manager 2. Right-click on the "My Computer" icon 3. Select "Properties" on the drop-down menu 4. A new window named "System Properties" will pop-up. Here select the "Advanced" tab. 5. On the "Advanced" tab, click the "Environment Variables" button. 6. A new window titled "Environment Variables" will pop-up. Here click the button "New" in the "System Variables" section of the window. 7. A new window will pop-up titled "New System Variable". Here you should fill the fields "Variable name" and "Variable Value", respectively, with HYPLASHOME and the path name (in full) of the directory ..\HYPLAS_v2.0\bin. 8. Press "OK" on the relevant pop-up windows. 9. The next time the computer is REBOOTED, this variable will be set to the correct path and HYPLAS should be able to find the error messages file ERROR.RUN if required. UNIX/LINUX systems ------------------ In a UNIX/LINUX operating system using a C-shell, for instance, the HYPLASHOME environment variable should be set with the command: setenv HYPLASHOME where here denotes the full path to the directory ../HYPLAS_v2.0/bin. To compile HYPLAS (from directory ../HYPLAS_v2.0/src) with a FORTRAN 77 compiler such as g77, you can use the command: g77 -o ../bin/hyplas hyplas.f */*.f Note that the executable file "hyplas" will be stored in the directory ../HYPLAS_2.0/bin (i.e. the directory set in the HYPLASHOME environment variable). Alternatively, you may use the Makefile provided (with suitable modifications, if needed) to create the HYPLAS executable. IMPORTANT: Before generating a HYPLAS executable, read Sections 2.(a) and 2.(b) below. 2.(a) Memory Requirements ------------------- HYPLAS memory requirements depend on the array dimensioning parameters set in files: ../HYPLAS_v2.0/src/ ELEMENTS.INC GLBDBASE.INC MATERIAL.INC MAXDIM.INC Files ELEMENTS.INC, GLBDBASE.INC and MATERIAL.INC contain parameters which are associated with the currently implemented finite elements and materials. DO NOT MODIFY THEM ! unless you are absolutely sure of what you are doing (only developers coding new elements or new material models/analysis types may need to modify them by changing the existing dimensioning parameters and/or including new parameters). The ONLY dimensioning file that can be safely modified by the average user is the file MAXDIM.INC This file contains the array dimensioning parameters related to the maximum permissible dimension of problems to be analysed by HYPLAS. These parameters include the maximum number of nodes, elements, element groups, etc. If necessary, CHANGE THESE PARAMETERS TO SUIT YOUR PROBLEM SIZE/MEMORY REQUIREMENTS before compiling HYPLAS. 2.(b) Testing a newly compiled executable ----------------------------------- After you have successfully compiled the HYPLAS source code and created an executable file, the next step is to run some tests to verify that HYPLAS is working well. To do this, proceed as follows: The directory ../HYPLAS_v2.0/book_examples/data_files contains a series of data files named .dat of benchmarked examples described in the companion textbook. The corresponding (benchmarked) result files are in the directory ../HYPLAS_v2.0/book_examples/result_files This directory contains a series of result files named .res generated with the current version of HYPLAS on a tested platform. All these files have been named such that their names start with the textbook section number where the corresponding example is described. For instance, files 14_9_2_tresca.dat and 14_9_2_tresca.res refer to a problem described in section 14.9.2 of the textbook, and so on. To check that HYPLAS is working well on your platform, after compiling HYPLAS, run the program HYPLAS for the examples of files .dat and compare the newly generated results .res with their benchmarked counterparts (of the same filename) in the result_files directory. To run an example, execute HYPLAS and use the keyboard to enter the name of the corresponding data file in full (including the extension .dat). To compare the benchmarked .res files against their newly generated you may proceed as follows: 1. On MICROSOFT WINDOWS systems - Here we have successfully used the software "ExamDiff" (the task was made particularly easy by selecting "View" and then the "Show Differences Only" option - this refers to version 1.8 of this software). 2. On UNIX/LINUX systems - Here we use the "diff" command from a shell window (and set the option to ignore blank spaces). A shell script may be used to perform this task automatically (including running HYPLAS and checking for result file differences) for all benchmarked examples provided. IMPORTANT: THE ONLY ACCEPTABLE DIFFERENCES BETWEEN A THE NEWLY GENERATED RESULT FILES AND THEIR BENCHMARKED COUNTERPARTS ARE THE DIMENSIONING PARAMETERS (FROM FILE MAXDIM.INC) USED TO COMPILE THE NEW EXECUTABLE (THESE PARAMETERS ARE PRINTED RIGHT AT THE BEGINNING OF THE RESULT FILES) AND NUMERICAL DIFFERENCES IN RESULTS DUE TO NUMERICAL "ROUNDING-OFF" (THESE ARE VERY SMALL DIFFERENCES THAT DEPEND ON THE PRECISION OF ARITHMETIC OPERATIONS IN THE PLATFORM USED). ALSO NOTE THAT THE EXAMPLES OF THE COMPANION TEXTBOOK DO NOT COVER ALL FEATURES OF HYPLAS. HENCE THIS TEST DOES NOT GUARANTEE THAT EVERYTHING IS WORKING PROPERLY. 3. THE H Y P L A S DIRECTORY TREE ================================ 3.(a) Summary ------- ../ HYPLAS_v2.0/ bin/ book_examples/ data_files/ result_files/ man/ html/ src/ CRYSTAL/ DAMAGE/ DAMAGED_ELASTIC/ DRUCKER_PRAGER/ ELASTIC/ ELEMENTS/ GENERAL/ MATERIALS/ MATHS/ MOHR_COULOMB/ OGDEN/ TRESCA/ VON_MISES/ VON_MISES_MIXED/ 3.(b) Description ----------- The HYPLAS program directory tree is organised as follows: ../HYPLAS_v2.0/ (this directory) This is the HYPLAS root directory, where the HYPLAS directory tree starts. ../HYPLAS_v2.0/bin/ This directory contains the file ERROR.RUN where most HYPLAS error/warning messages are. IMPORTANT: the environment variable HYPLASHOME should be set to this directory. Otherwise, HYPLAS will not find its error/warning messages when required. We also recommend that the EXECUTABLE of HYPLAS be stored in this directory. ../HYPLAS_v2.0/book_examples/ This directory has the following subdirectories: ../HYPLAS_v2.0/book_examples/data_files ../HYPLAS_v2.0/book_examples/result_files Refer to Section 2.(b) above for further details. ../HYPLAS_v2.0/man/ This is the HYPLAS documentation/manuals directory. It contains the following files: input_man.txt - A concise input data manual for HYPLAS in ASCII format; hyplas_calltree.txt - Contains a flowgraph (shows the call tree) of HYPLAS in ASCII-format. Note: calls to function subprograms are not included in this flowgraph; and the subdirectory: ../HYPLAS_v2.0/man/html This directory contains the hypertext (HTML) format Fortran source code and of manual pages of the entire HYPLAS program. Manual pages with descriptions of each function/subprogram including their argument list are linked to their corresponding HTML-format source code. This allows the user the navigate through the HYPLAS source code using a web browser. To start at the main program, use your web browser to open the file hyplas.html. This facility should be helpful to those trying to understand the flow of program HYPLAS. ../HYPLAS_v2.0/src/ This directory (and its subdirectories) contains the Fortran source code of HYPLAS. The files containing the sources are named following the standard practice: .f where is the name of the FORTRAN procedure (subroutine, function subprogram, etc.) whose source code is in file .f. The source code of the HYPLAS main program is in file hyplas.f and the HYPLAS database (COMMON blocks, array dimensioning parameters and other global parameters) is coded in the "include files" ELEMENTS.INC GLDBASE.INC MATERIAL.INC MAXDIM.INC in this directory. In addition, this directory contains a file named "Makefile" (UNIX-LINUX Release only) which may be used for compiling and linking HYPLAS in UNIX/LINUX systems. The subdirectories of ../HYPLAS_v2.0/src are as follows: ../HYPLAS_v2.0/src/CRYSTAL Contains the source code of all procedures related to the finite strain single crystal plasticity model implemented in HYPLAS. ../HYPLAS_v2.0/src/DAMAGE Source files of the procedures related to the Lemaitre ductile damage model implementation. ../HYPLAS_v2.0/src/DAMAGED_ELASTIC Source files of the procedures related to the damaged elasticity model with crack closure effect. ../HYPLAS_v2.0/src/DRUCKER_PRAGER Source files of the procedures related to the implemented Drucker-Prager plasticity model. ../HYPLAS_v2.0/src/ELASTIC Source files of the procedures related to the linear elasticity model (Hencky model under large strains) implemented. ../HYPLAS_v2.0/src/ELEMENTS Source files of the element interfaces and element-related procedures. ../HYPLAS_v2.0/src/GENERAL Source files of general procedures. ../HYPLAS_v2.0/src/MATERIALS Source files of the material interfaces. ../HYPLAS_v2.0/src/MATHS Source files of the mathematical procedures. ../HYPLAS_v2.0/src/MOHR_COULOMB Source files of the procedures related to the implemented Mohr-Coulomb plasticity model. ../HYPLAS_v2.0/src/OGDEN Source files of the procedures related to the implemented Ogden hyperelasticity model. ../HYPLAS_v2.0/src/TRESCA Source files of the procedures related to the implemented Tresca plasticity model. ../HYPLAS_v2.0/src/VON_MISES Source files of the procedures related to the implemented von Mises plasticity model with isotropic hardening. ../HYPLAS_v2.0/src/VON_MISES_MIXED Source files of the procedures related to the implemented von Mises plasticity model with mixed isotropic/kinematic hardening. 4. CROSS-REFERENCING BETWEEN THE SOURCE CODE AND THE TEXTBOOK ========================================================== Many references are made in the textbook to various subprograms of HYPLAS. These are usually made when a particular procedure described in the text is implemented in the program. The reader should refer to the textbook index. Also, a substantial number of comment lines have been added to the source code of HYPLAS with reference to sections, figures, boxes, etc of the textbook related to the part of the code in question. Such references are usually displayed after the word "REFERENCE:" (in capitals) on commented lines. Searching for this word will take you to the line of code where the particular routine has a reference to the textbook. NOTE: Occasional references to other textbooks/journal papers are also made following the word "REFERENCE:" on commented lines. 5. HYPLAS ERROR MESSAGING ====================== Most error/warning messages issued by HYPLAS are in the ASCII-format file ERROR.RUN (kept in the HYPLASHOME directory - ../HYPLAS_v2.0/bin). All such error/warning messages have an identification code (e.g. ED0015) which is printed both to the standard output (this is usually the computer screen) and to the relevant results file. If you wish to find where in the source code a particular message is being issued, then perform a search for the corresponding message identification code in the entire source code of HYPLAS. 6. FURTHER REMARKS ON HYPLAS ========================= 6.(a) Program efficiency THIS SECTION IS OF INTEREST ONLY TO THOSE WANTING TO MAKE HYPLAS RUN FASTER. It is particularly stressed in the textbook that this program has not been designed having efficiency in mind (refer to Section 5.1.2 of the textbook). Its structure has been designed mainly to illustrate in a relatively clear manner the computer implementation of the techniques and algorithms described in the text, with a particular view to the implementation of solid constitutive models and finite elements. For those who are especially interested in the speed of the code, there are a few tips that could help in this direction. Unfortunately, these involve modifications to the source code which is probably most appropriate to readers with a good level of experience in finite element programming. To those with this particular interest, we can suggest the following: (i) The use of faster linear solvers This is probably the change that would result in a greater gain in efficiency. The Frontal Method adopted in subroutine FRONT (file ../HYPLAS_v2.0/src/GENERAL/front.f) has been designed originally to save memory (back in the days when computer memory was severely limited). There are currently a vast number of methodologies which focus on speeding up the linear solution, in addition to reducing memory storage requirements (which is a particularly important issue in the solution of large scale problems). Some of these are extensions/refinements of the original Frontal solver. We remark that a number of such procedures (with their respective source codes) are available (conditions may apply) from the LAPACK (Linear Algebra PACKage - http://www.netlib.org/lapack) repository or from the HSL Library (http://www.cse.cse.scitech.ac.uk/nag/hsl). For the reader interested in gaining speed, we would recommend the replacement of the existing solver of FRONT by a faster one. We remark though that this is a substantial programming task. Another aspect here is the fact that computing times in FRONT are directly linked to the frontwidth of the system which, in the present version of HYPLAS is fixed and depends, for a given mesh, on how the degrees of freedom are numbered (node numbering). The incorporation of a frontwidth optimiser (which re-numbers the degrees of freedom in order to minimise the frontwidth) in FRONT could produce some good savings in computing times. Such savings become particularly noticeable in larger problems where the original node numbering produces an excessively large frontwidth. (ii) Material-specific computations The issues pointed out here affect only the computing times for specific material models and are expected to have a much lower impact in overall speed than the linear solver issue discussed above. Some of the material model-specific computations carried out in HYPLAS could be made a bit faster. For example, for isotropic models whose stress update is carried out in the principal stress space (such as the Tresca and Mohr-Coulomb models - see routines SUTR and SUMC, files ../HYPLAS_v2.0/src/TRESCA/sutr.f and ../HYPLAS_v2.0/MOHR_COULOMB/sumc.f, respectively) the spectral decomposition of the stress in carried out in the state update update routine and then repeated in the corresponding routine for computation of the consistent tangent operator (refer to files ../HYPLAS_v2.0/src/TRESCA/cttr.f and ../HYPLAS_v2.0/src/MOHR_COULOMB/ctmc.f, respectively, for the Tresca and Mohr-Coulomb plasticity models). Some savings in computing time can be achieved here by storing the stress eigenprojection tensors (these can be stored as state variables) during the execution of the state updating and then retrieving them later for use in the computation of the consistent tangent operator. This change can be incorporated to the code relatively easily. The computation of the exponential map and is derivative for the single crystal plasticity model (routines EXPMAP, file ../HYPLAS_v2.0/src/CRYSTAL/expmap.f and DEXPMP, file ../HYPLAS_v2.0/src/CRYSTAL/dexpmp.f) is carried out in three dimensions (these routines have been adapted from an earlier three-dimensional code). To improve efficiency, these can be adapted to work only in two-dimensional problems by removing the unnecessary operations related to the third dimension. 6.(b) Output of nodal averaged values The reader should be aware that the way in which nodal averaged values of stresses and other variables are calculated in HYPLAS is very basic (and rudimentary). This feature of the program is made available only to help those interested in producing contour plots, etc from results presented in HYPLAS result files and should be useful in many circumstances of interest. This facility has in fact been used in producing many of the figures presented in the textbook. But note, for example, that the values of incremental plastic multipliers for plasticity models may take (inadmissible) negative values when extrapolated from Gauss-point to nodes and averaged. We remark that more sophisticated and refined techniques of transferring Gauss point values of variables to nodal points and obtaining the corresponding smoothed field are available in the current literature. These fall outside the scope of the companion textbook of HYPLAS.
Date : 2011-07-29 Size : 10.5mb User : gtcewli3

DL : 0
SOFM(自组织特征映射):这种算法部分收到生物特征影响,在网络输出层内按几何中心或特征进行聚类。-SOFM (self-organizing feature map) : This algorithm received some biological features, the output layer to the network within the geometric center or cluster features.
Date : 2026-01-10 Size : 2kb User : 何风

DL : 0
以贪吃为基础算法解决背包问题,附加功能允许物品重量为0。在linux环境下用makefile进行编译。-to Dandelion-based algorithm to solve knapsack problem, additional feature allows weight to 0. Linux environment in the makefile used computer.
Date : 2026-01-10 Size : 5kb User : zhenglei

DL : 0
The module LSQ is for unconstrained linear least-squares fitting. It is based upon Applied Statistics algorithm AS 274 (see comments at the start of the module). A planar-rotation algorithm is used to update the QR- factorization. This makes it suitable for updating regressions as more data become available. The module contains a test for singularities which is simpler and quicker than calculating the singular-value decomposition. An important feature of the algorithm is that it does not square the condition number. The matrix X X is not formed. Hence it is suitable for ill- conditioned problems, such as fitting polynomials. By taking advantage of the MODULE facility, it has been possible to remove many of the arguments to routines. Apart from the new function VARPRD, and a back-substitution routine BKSUB2 which it calls, the routines behave as in AS 274.-The module is for unconstrained linear least-squares fitting. It is based upon Applied Statistics algorithm AS 274 (see comments at the start of the module). A planar- rotation algorithm is used to update the QR-factorization. This makes it suitable for updating regressions as more data become available. The module contains a test for singularities which is simpler and quicker than calculating the singular-value decomposition. An important feature of the algorithm is that it does not square the condition number. The matrix X X is not formed. Hence it is suitable for ill-conditioned problems, such as fitting Polynomials. By taking advantage of the MODULE facility, it has been possible to remove many of the arguments to routines. Apart from the new function VARPRD, and a back- substitution
Date : 2026-01-10 Size : 56kb User :

DL : 0
利用demon数据进行特征提取的C语言程序,欢迎交流-use demon data feature extraction C Programming Language, welcomed the exchange
Date : 2026-01-10 Size : 2kb User : 章晓亮

c语言矩阵特征值求解代码,在求解特征选择和特征提取时候使用的。欢迎各位测试,提意见。-c matrix eigenvalue language code for the solution of feature selection and feature extraction often used. Welcome to test opinions.
Date : 2026-01-10 Size : 3kb User : 刘泽奎

DL : 0
实现快速傅立叶变换,此源码最大的特点是简捷明了。易于理解-Fast Fourier transform, the biggest feature of this source is simple to understand. Easy to understand
Date : 2026-01-10 Size : 1kb User : 蔡志成

VC小波应用程序,包括小波滤波器,小波图像处理,小波特征提取。-VC wavelet applications, including wavelet filter, Wavelet image processing, wavelet feature extraction.
Date : 2026-01-10 Size : 117kb User : 楚燕

DL : 0
此软件可完成十六进制和二进制之间的互转。对汇编程序的分析有一些帮助。昨天刚做的,功能不是很多,但挺实用的。拿出来分享一下。-This software can be completed in hex and binary conversion between. Analysis of the assembler has some help. To do yesterday, feature not many, but quite practical. Come up with to share.
Date : 2026-01-10 Size : 303kb User : hyz

介绍小波算法在vc中的具体实现,小波算法在图像处理、视频压缩、特征提取等涉及到时频数据处理的工程领域有广泛的应用,本程序时一维小波算法。-Introduced the wavelet algorithm in the concrete realization of vc, wavelet algorithm in image processing, video compression, feature extraction, such as related to time-frequency data-processing areas of the project a wide range of applications, the process of one-dimensional wavelet algorithm.
Date : 2026-01-10 Size : 75kb User : wanglili

介绍小波算法在vc中的具体实现,小波算法在图像处理、视频压缩、特征提取等涉及到时频数据处理的工程领域有广泛的应用,本程序时二维小波算法。-Introduced the wavelet algorithm in the concrete realization of vc, wavelet algorithm in image processing, video compression, feature extraction, such as related to time-frequency data processing a wide range of engineering applications, this process two-dimensional wavelet algorithm.
Date : 2026-01-10 Size : 88kb User : wanglili

DL : 0
MATFOR FFT Visual Fortran program. MATFOR Extensions, as implied in the name, are data or components external to MATFOR modules that can be used to add versatility to MATFOR programs. Currently there are two types of extensions available with MATFOR, they are MATLAB Interface and Tecplot FileIO. MATLAB Interface, a new feature in MATFOR 4.1, provides MATFOR users access to MATLAB functions so they can obtain functionality that has not been built into MATFOR. The ability of using MATLAB functions makes MATFOR an ideal tool for those who create prototypes using MATLAB, then do implementation in C++ and other programming languages. Through the use of MATFOR, users may perform quick results comparisons between MATLAB and other languages. -MATFOR FFT Visual Fortran program.MATFOR Extensions, as implied in the name, are data or components external to MATFOR modules that can be used to add versatility to MATFOR programs. Currently there are two types of extensions available with MATFOR, they are MATLAB Interface and Tecplot FileIO. MATLAB Interface, a new feature in MATFOR 4.1, provides MATFOR users access to MATLAB functions so they can obtain functionality that has not been built into MATFOR. The ability of using MATLAB functions makes MATFOR an ideal tool for those who create prototypes using MATLAB, then do implementation in C++ and other programming languages. Through the use of MATFOR, users may perform quick results comparisons between MATLAB and other languages.
Date : 2026-01-10 Size : 266kb User : donotspam

DL : 0
利用QR分解法求一个10*10矩阵的特征值-QR decomposition method to use a 10* 10 matrix eigenvalue
Date : 2026-01-10 Size : 1kb User : jjx

一个简单的傅立叶带亮度描绘子提取图像的形状特征程序-A simple Fourier descriptor with the brightness of the image shape feature extraction procedures
Date : 2026-01-10 Size : 194kb User : 黎维娟

DL : 0
主成分分析程序,可用于数据降维及特征提取。-Principal component analysis procedures, can be used for data dimensionality reduction and feature extraction.
Date : 2026-01-10 Size : 8kb User : 武锐

该算法将实际问题通过非线性变换到高维的特征空间,在高维空间中构造线性判别函数,以替换原空间中的非线性判别函数,这样能保证机器有较好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关-The algorithm will be practical problems through the nonlinear transformation to high-dimensional feature space, in high-dimensional space in the structure of linear discriminant function to replace the original space of nonlinear discriminant function, it can guarantee the machine has better generalization ability At the same time, it is cleverly solved the problem dimension, the algorithm complexity has nothing to do with the sample dimension
Date : 2026-01-10 Size : 4kb User : 王旭

核函数是利用支持向量机解决不可分问题时引入的一种非线性变换的手段。基本思想是通过非线性变换,使样本变换之后的特征空间中变得线性可分。然后利用线性可分时构造最优超平面的方法,在特征空间中实现最优超平面的求解。-Kernel function is the use of support vector machine to resolve the issue can not be separated from the introduction of a nonlinear transform means. Basic idea is to adoption of non-linear transform, so that after changing the characteristics of the sample space become linearly separable. And the use of linear time-structure optimal hyperplane method of implementation in the feature space for solving the optimal hyperplane.
Date : 2026-01-10 Size : 4kb User : 王旭

DL : 0
this is texture analyzer code to segment an image replying on the texture feature,it is programmed in java
Date : 2026-01-10 Size : 5kb User : me

DL : 0
详细介绍了贝叶斯公式在自动文本分类领域的使用,并且提到了关于互信息特征提取的方法。以及其分类的例子。-Bayesian formula described in detail in the field of automatic text categorization of the use of, and reference information on each feature extraction method. As well as examples of their classification.
Date : 2026-01-10 Size : 4kb User : LuoJun

feature selection by aco
Date : 2026-01-10 Size : 2kb User : sasa
« 12 3 4 5 6 7 8 9 10 ... 22 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.