CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - compiler
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - compiler - List
[
Algorithm
]
hyplas
DL : 11
************************************************************************ * * * * * THIS IS THE H Y P L A S 2.0 README FILE * * ----------------- * * * * HYPLAS is a finite element program for implicit small and large * * strain analisys of hyperelastic and elasto-plastic two-dimensional * * and axisymmetric solids * * * * HYPLAS v2.0 is the companion software to the textbook: * * EA de Souza Neto, D Peric & DRJ Owen. Computational Methods for * * Plasticity: Theory and Applications. Wiley, Chichester, 2008. * * (www.wiley.com/go/desouzaneto) * * * * Copyright (c) 1998-2008 EA de Souza Neto, D Peric, D.R.J. Owen * *----------------------------------------------------------------------* * File last updated: 18 October 2008 * * * * This file belongs in the directory ../HYPLAS_v2.0 * ************************************************************************ * * * I M P O R T A N T * * * * READ SECTIONS 0 TO 3 OF THIS FILE CAREFULLY BEFORE ATTEMPTING * * TO COMPILE AND RUN THE PROGRAM HYPLAS ON YOUR COMPUTER !! * * * * THE AUTHORS DO NOT GUARANTEE THAT ANY SUGGESTIONS/INSTRUCTIONS * * GIVEN IN THIS README FILE WILL WORK ON ANY PARTICULAR OPERATING * * SYSTEM. IF YOU DECIDE TO FOLLOW ANY SUGGESTIONS/INSTRUCTIONS * * GIVEN HERE YOU MUST DO SO AT YOUR OWN RISK. * * * * * * BUG REPORTS: Please send bug reports to * * * * hyplas_v2.0@live.co.uk * * * * Messages sent to the authors' personal email addresses * * will NOT be answered. * ************************************************************************ This file contains the following sections: 0. Copyright statement and disclaimer 0.(a) Copyright statement 0.(b) Disclaimer 0.(c) Conditions of use 1. Introduction 1.(a) Note on portability 2. Compiling and running HYPLAS 2.(a) Memory requirements 2.(b) Testing a newly compiled executable 3. The HYPLAS directory tree 4. Cross-referencing between the source code and the textbook 5. HYPLAS error messaging 6. Further remarks on HYPLAS ************************************************************************ 0. COPYRIGHT STATEMENT AND DISCLAIMER ================================== 0.(a) Copyright statement ------------------- You may only use this program for your own private purposes. You are not allowed, in any circumstances, to distribute this program (including its source code, executable and any other files related to it, either in their original version or any modifications introduced by you, the authors or any other party) in whole or in part, either freely or otherwise, in any medium, without the prior written consent of the copyright holders. 0.(b) Disclaimer ---------- This program (including its source code, executable and any other files related to it) is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, any implied warranties of fitness for purpose. In particular, THIS PROGRAM IS BY NO MEANS GUARANTEED TO BE FREE FROM ERRORS. This program (or any modification incorporated to it by you, the authors or any other party) will run entirely at your risk. The results produced by this program are in no way guaranteed to be fit for any purpose. Under no circumstances will the authors/copyright holders be liable to anyone for damages, including any general, special, incidental or consequential damages arising from the use or inability to use the program (including, but not limited to, loss or corruption of data, failure of the program to operate in any particular way as well as damages arising from the use of any results produced by the program for any purpose). 0.(c) Conditions of use ----------------- You may only use this program if you fully understand and agree with the terms of the above disclaimer. You must not use this program if you do not agree with or do not understand (fully or in part) these conditions of use. 1. INTRODUCTION ============ HYPLAS is a finite element code for small and large strain analysis of hyperelastic and elasto-plastic solids. Most procedures implemented in HYPLAS are described in detail in its companion textbook: EA de Souza Neto, D Peric & DRJ Owen. Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester, 2008 (www.wiley.com/go/desouzaneto). 1.(a) Note on Portability ------------------- HYPLAS has been written in standard ANSI FORTRAN 77. Currently, the only known (and deliberate) exceptions to the FORTRAN 77 ANSI standard are the instructions: INCLUDE '' used in many routines to include the HYPLAS database files (common blocks and global variables), and; CALL GETENV('HYPLASHOME',HYPLASHOME) used in subroutine "ERRPRT" (file ../HYPLAS_v2.0/src/GENERAL/errprt.f). This instruction inquires the name of the system environment variable HYPLASHOME and writes it on the character string HYPLASHOME. This instruction is NOT part of the ANSI FORTRAN 77 standard, but seems to work in most currently available FORTRAN 77 compilers. 2. COMPILING AND RUNNING H Y P L A S ================================== The HYPLAS source code is stored in directory ../HYPLAS_v2.0/src/ (../HYPLAS_v2.0/ being the current directory) and all its subdirectories. To generate an executable file, you just need to compile the FORTRAN source files: ../HYPLAS_v2.0/src/hyplas.f and ../HYPLAS_v2.0/src/*/*.f together. We recommend that the executable HYPLAS be stored in the directory ../HYPLAS_v2.0/bin to which the environment variable HYPLASHOME should be set (see below how to set a system environmental variable). WINDOWS (R) systems ------------------- On Microsoft Windows(R) systems, HYPLAS has been successfully compiled using Intel Visual Fortran Compiler(R) integrated with Microsoft Visual Studio(R). Here you only need to create a project that contains all Fortran source files mentioned above as well as the include files ..\HYPLAS_v2.0\src\*.INC On a Windows XP system, the system environment variable HYPLASHOME can be set as follows: 1. Open a File Manager 2. Right-click on the "My Computer" icon 3. Select "Properties" on the drop-down menu 4. A new window named "System Properties" will pop-up. Here select the "Advanced" tab. 5. On the "Advanced" tab, click the "Environment Variables" button. 6. A new window titled "Environment Variables" will pop-up. Here click the button "New" in the "System Variables" section of the window. 7. A new window will pop-up titled "New System Variable". Here you should fill the fields "Variable name" and "Variable Value", respectively, with HYPLASHOME and the path name (in full) of the directory ..\HYPLAS_v2.0\bin. 8. Press "OK" on the relevant pop-up windows. 9. The next time the computer is REBOOTED, this variable will be set to the correct path and HYPLAS should be able to find the error messages file ERROR.RUN if required. UNIX/LINUX systems ------------------ In a UNIX/LINUX operating system using a C-shell, for instance, the HYPLASHOME environment variable should be set with the command: setenv HYPLASHOME where here denotes the full path to the directory ../HYPLAS_v2.0/bin. To compile HYPLAS (from directory ../HYPLAS_v2.0/src) with a FORTRAN 77 compiler such as g77, you can use the command: g77 -o ../bin/hyplas hyplas.f */*.f Note that the executable file "hyplas" will be stored in the directory ../HYPLAS_2.0/bin (i.e. the directory set in the HYPLASHOME environment variable). Alternatively, you may use the Makefile provided (with suitable modifications, if needed) to create the HYPLAS executable. IMPORTANT: Before generating a HYPLAS executable, read Sections 2.(a) and 2.(b) below. 2.(a) Memory Requirements ------------------- HYPLAS memory requirements depend on the array dimensioning parameters set in files: ../HYPLAS_v2.0/src/ ELEMENTS.INC GLBDBASE.INC MATERIAL.INC MAXDIM.INC Files ELEMENTS.INC, GLBDBASE.INC and MATERIAL.INC contain parameters which are associated with the currently implemented finite elements and materials. DO NOT MODIFY THEM ! unless you are absolutely sure of what you are doing (only developers coding new elements or new material models/analysis types may need to modify them by changing the existing dimensioning parameters and/or including new parameters). The ONLY dimensioning file that can be safely modified by the average user is the file MAXDIM.INC This file contains the array dimensioning parameters related to the maximum permissible dimension of problems to be analysed by HYPLAS. These parameters include the maximum number of nodes, elements, element groups, etc. If necessary, CHANGE THESE PARAMETERS TO SUIT YOUR PROBLEM SIZE/MEMORY REQUIREMENTS before compiling HYPLAS. 2.(b) Testing a newly compiled executable ----------------------------------- After you have successfully compiled the HYPLAS source code and created an executable file, the next step is to run some tests to verify that HYPLAS is working well. To do this, proceed as follows: The directory ../HYPLAS_v2.0/book_examples/data_files contains a series of data files named .dat of benchmarked examples described in the companion textbook. The corresponding (benchmarked) result files are in the directory ../HYPLAS_v2.0/book_examples/result_files This directory contains a series of result files named .res generated with the current version of HYPLAS on a tested platform. All these files have been named such that their names start with the textbook section number where the corresponding example is described. For instance, files 14_9_2_tresca.dat and 14_9_2_tresca.res refer to a problem described in section 14.9.2 of the textbook, and so on. To check that HYPLAS is working well on your platform, after compiling HYPLAS, run the program HYPLAS for the examples of files .dat and compare the newly generated results .res with their benchmarked counterparts (of the same filename) in the result_files directory. To run an example, execute HYPLAS and use the keyboard to enter the name of the corresponding data file in full (including the extension .dat). To compare the benchmarked .res files against their newly generated you may proceed as follows: 1. On MICROSOFT WINDOWS systems - Here we have successfully used the software "ExamDiff" (the task was made particularly easy by selecting "View" and then the "Show Differences Only" option - this refers to version 1.8 of this software). 2. On UNIX/LINUX systems - Here we use the "diff" command from a shell window (and set the option to ignore blank spaces). A shell script may be used to perform this task automatically (including running HYPLAS and checking for result file differences) for all benchmarked examples provided. IMPORTANT: THE ONLY ACCEPTABLE DIFFERENCES BETWEEN A THE NEWLY GENERATED RESULT FILES AND THEIR BENCHMARKED COUNTERPARTS ARE THE DIMENSIONING PARAMETERS (FROM FILE MAXDIM.INC) USED TO COMPILE THE NEW EXECUTABLE (THESE PARAMETERS ARE PRINTED RIGHT AT THE BEGINNING OF THE RESULT FILES) AND NUMERICAL DIFFERENCES IN RESULTS DUE TO NUMERICAL "ROUNDING-OFF" (THESE ARE VERY SMALL DIFFERENCES THAT DEPEND ON THE PRECISION OF ARITHMETIC OPERATIONS IN THE PLATFORM USED). ALSO NOTE THAT THE EXAMPLES OF THE COMPANION TEXTBOOK DO NOT COVER ALL FEATURES OF HYPLAS. HENCE THIS TEST DOES NOT GUARANTEE THAT EVERYTHING IS WORKING PROPERLY. 3. THE H Y P L A S DIRECTORY TREE ================================ 3.(a) Summary ------- ../ HYPLAS_v2.0/ bin/ book_examples/ data_files/ result_files/ man/ html/ src/ CRYSTAL/ DAMAGE/ DAMAGED_ELASTIC/ DRUCKER_PRAGER/ ELASTIC/ ELEMENTS/ GENERAL/ MATERIALS/ MATHS/ MOHR_COULOMB/ OGDEN/ TRESCA/ VON_MISES/ VON_MISES_MIXED/ 3.(b) Description ----------- The HYPLAS program directory tree is organised as follows: ../HYPLAS_v2.0/ (this directory) This is the HYPLAS root directory, where the HYPLAS directory tree starts. ../HYPLAS_v2.0/bin/ This directory contains the file ERROR.RUN where most HYPLAS error/warning messages are. IMPORTANT: the environment variable HYPLASHOME should be set to this directory. Otherwise, HYPLAS will not find its error/warning messages when required. We also recommend that the EXECUTABLE of HYPLAS be stored in this directory. ../HYPLAS_v2.0/book_examples/ This directory has the following subdirectories: ../HYPLAS_v2.0/book_examples/data_files ../HYPLAS_v2.0/book_examples/result_files Refer to Section 2.(b) above for further details. ../HYPLAS_v2.0/man/ This is the HYPLAS documentation/manuals directory. It contains the following files: input_man.txt - A concise input data manual for HYPLAS in ASCII format; hyplas_calltree.txt - Contains a flowgraph (shows the call tree) of HYPLAS in ASCII-format. Note: calls to function subprograms are not included in this flowgraph; and the subdirectory: ../HYPLAS_v2.0/man/html This directory contains the hypertext (HTML) format Fortran source code and of manual pages of the entire HYPLAS program. Manual pages with descriptions of each function/subprogram including their argument list are linked to their corresponding HTML-format source code. This allows the user the navigate through the HYPLAS source code using a web browser. To start at the main program, use your web browser to open the file hyplas.html. This facility should be helpful to those trying to understand the flow of program HYPLAS. ../HYPLAS_v2.0/src/ This directory (and its subdirectories) contains the Fortran source code of HYPLAS. The files containing the sources are named following the standard practice: .f where is the name of the FORTRAN procedure (subroutine, function subprogram, etc.) whose source code is in file .f. The source code of the HYPLAS main program is in file hyplas.f and the HYPLAS database (COMMON blocks, array dimensioning parameters and other global parameters) is coded in the "include files" ELEMENTS.INC GLDBASE.INC MATERIAL.INC MAXDIM.INC in this directory. In addition, this directory contains a file named "Makefile" (UNIX-LINUX Release only) which may be used for compiling and linking HYPLAS in UNIX/LINUX systems. The subdirectories of ../HYPLAS_v2.0/src are as follows: ../HYPLAS_v2.0/src/CRYSTAL Contains the source code of all procedures related to the finite strain single crystal plasticity model implemented in HYPLAS. ../HYPLAS_v2.0/src/DAMAGE Source files of the procedures related to the Lemaitre ductile damage model implementation. ../HYPLAS_v2.0/src/DAMAGED_ELASTIC Source files of the procedures related to the damaged elasticity model with crack closure effect. ../HYPLAS_v2.0/src/DRUCKER_PRAGER Source files of the procedures related to the implemented Drucker-Prager plasticity model. ../HYPLAS_v2.0/src/ELASTIC Source files of the procedures related to the linear elasticity model (Hencky model under large strains) implemented. ../HYPLAS_v2.0/src/ELEMENTS Source files of the element interfaces and element-related procedures. ../HYPLAS_v2.0/src/GENERAL Source files of general procedures. ../HYPLAS_v2.0/src/MATERIALS Source files of the material interfaces. ../HYPLAS_v2.0/src/MATHS Source files of the mathematical procedures. ../HYPLAS_v2.0/src/MOHR_COULOMB Source files of the procedures related to the implemented Mohr-Coulomb plasticity model. ../HYPLAS_v2.0/src/OGDEN Source files of the procedures related to the implemented Ogden hyperelasticity model. ../HYPLAS_v2.0/src/TRESCA Source files of the procedures related to the implemented Tresca plasticity model. ../HYPLAS_v2.0/src/VON_MISES Source files of the procedures related to the implemented von Mises plasticity model with isotropic hardening. ../HYPLAS_v2.0/src/VON_MISES_MIXED Source files of the procedures related to the implemented von Mises plasticity model with mixed isotropic/kinematic hardening. 4. CROSS-REFERENCING BETWEEN THE SOURCE CODE AND THE TEXTBOOK ========================================================== Many references are made in the textbook to various subprograms of HYPLAS. These are usually made when a particular procedure described in the text is implemented in the program. The reader should refer to the textbook index. Also, a substantial number of comment lines have been added to the source code of HYPLAS with reference to sections, figures, boxes, etc of the textbook related to the part of the code in question. Such references are usually displayed after the word "REFERENCE:" (in capitals) on commented lines. Searching for this word will take you to the line of code where the particular routine has a reference to the textbook. NOTE: Occasional references to other textbooks/journal papers are also made following the word "REFERENCE:" on commented lines. 5. HYPLAS ERROR MESSAGING ====================== Most error/warning messages issued by HYPLAS are in the ASCII-format file ERROR.RUN (kept in the HYPLASHOME directory - ../HYPLAS_v2.0/bin). All such error/warning messages have an identification code (e.g. ED0015) which is printed both to the standard output (this is usually the computer screen) and to the relevant results file. If you wish to find where in the source code a particular message is being issued, then perform a search for the corresponding message identification code in the entire source code of HYPLAS. 6. FURTHER REMARKS ON HYPLAS ========================= 6.(a) Program efficiency THIS SECTION IS OF INTEREST ONLY TO THOSE WANTING TO MAKE HYPLAS RUN FASTER. It is particularly stressed in the textbook that this program has not been designed having efficiency in mind (refer to Section 5.1.2 of the textbook). Its structure has been designed mainly to illustrate in a relatively clear manner the computer implementation of the techniques and algorithms described in the text, with a particular view to the implementation of solid constitutive models and finite elements. For those who are especially interested in the speed of the code, there are a few tips that could help in this direction. Unfortunately, these involve modifications to the source code which is probably most appropriate to readers with a good level of experience in finite element programming. To those with this particular interest, we can suggest the following: (i) The use of faster linear solvers This is probably the change that would result in a greater gain in efficiency. The Frontal Method adopted in subroutine FRONT (file ../HYPLAS_v2.0/src/GENERAL/front.f) has been designed originally to save memory (back in the days when computer memory was severely limited). There are currently a vast number of methodologies which focus on speeding up the linear solution, in addition to reducing memory storage requirements (which is a particularly important issue in the solution of large scale problems). Some of these are extensions/refinements of the original Frontal solver. We remark that a number of such procedures (with their respective source codes) are available (conditions may apply) from the LAPACK (Linear Algebra PACKage - http://www.netlib.org/lapack) repository or from the HSL Library (http://www.cse.cse.scitech.ac.uk/nag/hsl). For the reader interested in gaining speed, we would recommend the replacement of the existing solver of FRONT by a faster one. We remark though that this is a substantial programming task. Another aspect here is the fact that computing times in FRONT are directly linked to the frontwidth of the system which, in the present version of HYPLAS is fixed and depends, for a given mesh, on how the degrees of freedom are numbered (node numbering). The incorporation of a frontwidth optimiser (which re-numbers the degrees of freedom in order to minimise the frontwidth) in FRONT could produce some good savings in computing times. Such savings become particularly noticeable in larger problems where the original node numbering produces an excessively large frontwidth. (ii) Material-specific computations The issues pointed out here affect only the computing times for specific material models and are expected to have a much lower impact in overall speed than the linear solver issue discussed above. Some of the material model-specific computations carried out in HYPLAS could be made a bit faster. For example, for isotropic models whose stress update is carried out in the principal stress space (such as the Tresca and Mohr-Coulomb models - see routines SUTR and SUMC, files ../HYPLAS_v2.0/src/TRESCA/sutr.f and ../HYPLAS_v2.0/MOHR_COULOMB/sumc.f, respectively) the spectral decomposition of the stress in carried out in the state update update routine and then repeated in the corresponding routine for computation of the consistent tangent operator (refer to files ../HYPLAS_v2.0/src/TRESCA/cttr.f and ../HYPLAS_v2.0/src/MOHR_COULOMB/ctmc.f, respectively, for the Tresca and Mohr-Coulomb plasticity models). Some savings in computing time can be achieved here by storing the stress eigenprojection tensors (these can be stored as state variables) during the execution of the state updating and then retrieving them later for use in the computation of the consistent tangent operator. This change can be incorporated to the code relatively easily. The computation of the exponential map and is derivative for the single crystal plasticity model (routines EXPMAP, file ../HYPLAS_v2.0/src/CRYSTAL/expmap.f and DEXPMP, file ../HYPLAS_v2.0/src/CRYSTAL/dexpmp.f) is carried out in three dimensions (these routines have been adapted from an earlier three-dimensional code). To improve efficiency, these can be adapted to work only in two-dimensional problems by removing the unnecessary operations related to the third dimension. 6.(b) Output of nodal averaged values The reader should be aware that the way in which nodal averaged values of stresses and other variables are calculated in HYPLAS is very basic (and rudimentary). This feature of the program is made available only to help those interested in producing contour plots, etc from results presented in HYPLAS result files and should be useful in many circumstances of interest. This facility has in fact been used in producing many of the figures presented in the textbook. But note, for example, that the values of incremental plastic multipliers for plasticity models may take (inadmissible) negative values when extrapolated from Gauss-point to nodes and averaged. We remark that more sophisticated and refined techniques of transferring Gauss point values of variables to nodal points and obtaining the corresponding smoothed field are available in the current literature. These fall outside the scope of the companion textbook of HYPLAS.
Date
: 2011-07-29
Size
: 10.5mb
User
:
gtcewli3
[
Algorithm
]
分支与界法
DL : 0
图论中使用分支与界法求解旅行商问题,直接在vc中编译可运行-graph theory with the use of branch and bound for traveling salesman problem, which directly vc compiler can run
Date
: 2025-12-21
Size
: 2kb
User
:
谢继晖
[
Algorithm
]
一个可以对任意长整数进行加减的类
DL : 0
在Visual C++6.0 WinXp下编译通过采用类来实现,从CString继承而来数据运算的结果保存在CString类中理论上可对任意长的数据进行相加在Release目录下有可执行文件,将*.txt拖放到longadd.exe上即可,*.txt为数据文件-in Visual C Compiler 6.0 WinXp adopted under the category achieved redeem inherited from the Operational data stored in the category redeem theoretically can arbitrarily long data together in the Release directory is executable file to*. txt longadd.exe to drag on top,* . txt file data
Date
: 2025-12-21
Size
: 60kb
User
:
何炜
[
Algorithm
]
LL1 grammer
DL : 0
vc++实现编译原理中的LL(1)文法的编译过程,非常好用.-vc realization of the principle of compiler LL (1) grammar compiler course, very handy.
Date
: 2025-12-21
Size
: 4kb
User
:
张小文
[
Algorithm
]
fft&ifft
DL : 0
集成ifft和fft,以头文件的形式提供调用,可以用于任何C编译器-integration and fft to the first document in the form of call, can be used on any C compiler
Date
: 2025-12-21
Size
: 1kb
User
:
胡安
[
Algorithm
]
IIR带通滤波器设计
DL : 0
IIR带通滤波器设计,提供交互界面,JAVA编写,VJ编译-IIR band-pass filter design, interface, JAVA prepared, VJ compiler
Date
: 2025-12-21
Size
: 95kb
User
:
胡安
[
Algorithm
]
LU_Decompound_for_C++
DL : 0
应用LU分解法计算矩阵的程序 C++制作 未编译,已经测试-application LU decomposition of the matrix calculation procedure produced no C compiler, testing
Date
: 2025-12-21
Size
: 1kb
User
:
老张
[
Algorithm
]
vc511678900355
DL : 0
可能很多人都曾经想过要实现一些比较大的数的阶乘,但是C++中提供的标准数据类型其存储空间太小,根本无法实现。我们可以通过其他方法来实现,本程序用一个很简单的算法实现数的阶乘,程序很短,也很简单,各处都有注释,相信大家很容易就可以看懂,下载源码后在VC6.0中打开编译后即可运行,程序经少许改动可以实现更大的数的阶乘,有兴趣的读者在看完本程序后可一动手试试,其乐无穷!!希望这个程序能给大家一点帮助。程序可能还有许多不足之出,热烈欢迎各位前来指导。在下在此表示衷心的感谢!!!!! -many people may have thought about the need to achieve some fairly large number of factorial, but C is the standard data types storage space is too small, it is virtually impossible to achieve. We can through other methods to achieve this procedure with a very simple algorithm factorial number of procedures is very short, very simple, notes everywhere, I believe we can easily understand, download source after the open VC6.0 compiler can run after the procedures by the little changes can achieve greater number of factorial, the readers are interested in reading this procedure can be a hands-try, Fun for all at! ! Hope that this procedure can give us some help. There may be many procedural deficiencies that warm welcome to you all to the guide. The next like to express our heartfelt thanks!
Date
: 2025-12-21
Size
: 2kb
User
:
梁小姐
[
Algorithm
]
hmake
DL : 0
Haskell是一种程序语言。特别的,它是多态类型,懒惰的,纯的函数式语言,与大多数其它编程语言不同。 该语言被命名为Haskell Brooks Curry。它是以数学逻辑为基础的函数式语言,基于lambda演算。 为什么使用Haskell? 写一个能工作的大型的软件系统是很困难的而且很昂贵的。维护这个系统甚至更加困难和昂贵。函数式程序语言,例如Haskell,能够使之变得简单而且廉价。 附件为Haskell编译器源代码-Haskell is a programming language. In particular, it is polymorphic type, lazy, pure functional languages, and most other programming language is different. The language was named Haskell Brooks Curry. It is based on mathematical logic-based language function, based on the lambda calculus. Why use Haskell? One can write the large software systems is very difficult and very expensive. Maintaining the system even more difficult and expensive. Functional programming languages, such as Haskell, to make it simple and cheap. Haskell annex to the compiler source code
Date
: 2025-12-21
Size
: 58kb
User
:
jbbao
[
Algorithm
]
Interpreter and libraries
DL : 0
Haskell编译器和库 Haskell是一种广谱语言,适合各种应用。他尤其适合需要高度可修改和维护的程序。大多数软件产品的生命期主要花费在规范,设计和维护而不是编程。函数式语言能很好的写能够真正执行(也可以测试和调试)的规范,该规范也就是最终程序的第一个原型。 -Haskell compiler and libraries Haskell is a broad-spectrum language, suitable for a variety of applications. In particular, he needs highly suitable for modification and maintenance procedures. The majority of software products mainly spent his life in the specifications, design and maintenance rather than programming. Language function can be good to write genuine implementation (also can test and debug) norms, the specification is the final procedures for the prototype.
Date
: 2025-12-21
Size
: 4mb
User
:
jbbao
[
Algorithm
]
Haskell教程
DL : 0
Haskell教程(by rufi) 传统的Basic,Pascal,C++,C#,Java,Python等都是命令(imperative)编程语言, 程序语句有一定的执行次序. 函数(functional)编程语言则给出执行的内容, 关注于更高层次的"做什么"而不是"怎么做", 这就是二者最明显的一个区别。函数编程语言的语法功能非常强,使编程的效率大幅提高。 Haskell是世界上公认的语法最优美最简洁的一种语言。的确,Haskell语言是写给人看的,而不是写给机器看的。另一方面,这也使得的 Haskell的编译技术成为一个难点。从以人为本的角度来看,程序员的时间比机器的时间更宝贵,所以Haskell是明智的选择。-Haskell Guide (by rufi) traditional Basic, Pascal, C, C#, Java, Python, are orders (imperative) programming language, procedures statement to a certain extent the implementation of the order. function (functional) programming language is given in the implementation of the content, focus on a higher level of "what to do" rather than "how to do", which is both the most obvious one distinction. Function programming language syntax is very strong, so the programming efficiency greatly improved. Haskell is the world's most recognized syntax of the most succinct and beautiful language. Indeed, Haskell is written on posters, and not written for machines to read. The other, it also makes the Haskell compiler technology as a difficulty. From a people-oriented perspective, t
Date
: 2025-12-21
Size
: 12kb
User
:
jbbao
[
Algorithm
]
积分
DL : 0
一个用C++编写的积分算法,可以用VC编译.-an integral prepared by the algorithm can be used in VC compiler.
Date
: 2025-12-21
Size
: 13kb
User
:
star
[
Algorithm
]
GM2
DL : 0
GM(1,1)灰色模型,便于了解其混沌特性,程序很短,由matlab编译,-GM (1,1) gray model to facilitate understanding of their chaotic behavior, a very short procedure, Matlab Compiler,
Date
: 2025-12-21
Size
: 1kb
User
:
刘地
[
Algorithm
]
Matlabfunctionsoursecode
DL : 0
Matlab数值解算法实现代码,在matlab6.5下运行编译通过!-Matlab numerical solution algorithm code, the compiler matlab6.5 running through!
Date
: 2025-12-21
Size
: 23kb
User
:
Johnson
[
Algorithm
]
calclulator
DL : 0
本程序由windows xp 环境下 编写,为java 的源程序,大家可用javac 编译后使用. -the procedures windows xp environment to prepare for the java source files, We can use the javac compiler.
Date
: 2025-12-21
Size
: 3kb
User
:
leniux
[
Algorithm
]
duirenyichangzhengshujiajian
DL : 0
采用类来实现对任意长的数据进行相加 在Visual C++6.0 WinXp下编译通过-used to achieve the kind of arbitrary length of data together in Visual C compiler under 6.0 WinXp through
Date
: 2025-12-21
Size
: 17kb
User
:
王权
[
Algorithm
]
tuihuosuanfa
DL : 0
在Visual C++ 编译环境下,模拟退火算法程序,并利用它们求解了48个城市的TSP问题。-in Visual C compiler environment, simulated annealing procedures, and use them for the 48 cities in the TSP.
Date
: 2025-12-21
Size
: 55kb
User
:
yuanhai
[
Algorithm
]
HJFGF
DL : 0
黄金分割法的源代码 用于优化设计 Turbo 2.0 下编译-0.618 method of optimizing the source code for Turbo Design Compiler 2.0
Date
: 2025-12-21
Size
: 1kb
User
:
李冰
[
Algorithm
]
Fort99
DL : 0
fortran compiler 90,77,95-fortran 90 compiler
Date
: 2025-12-21
Size
: 5.55mb
User
:
super
[
Algorithm
]
Compiler
DL : 0
This some compiler code-This is some compiler code
Date
: 2025-12-21
Size
: 5kb
User
:
shariful Islam
«
1
2
3
4
5
6
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.