Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - 9-1 9-2
Search - 9-1 9-2 - List
目录 ㈠ 点的基本运算 1. 平面上两点之间距离 1 2. 判断两点是否重合 1 3. 矢量叉乘 1 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡ 线段及直线的基本运算 1. 点与线段的关系 3 2. 求点到线段所在直线垂线的垂足 4 3. 点到线段的最近点 4 4. 点到线段所在直线的距离 4 5. 点到折线集的最近距离 4 6. 判断圆是否在多边形内 5 7. 求矢量夹角余弦 5 8. 求线段之间的夹角 5 9. 判断线段是否相交 6 10.判断线段是否相交但不交在端点处 6 11.求线段所在直线的方程 6 12.求直线的斜率 7 13.求直线的倾斜角 7 14.求点关于某直线的对称点 7 15.判断两条直线是否相交及求直线交点 7 16.判断线段是否相交,如果相交返回交点 7 ㈢ 多边形常用算法模块 1. 判断多边形是否简单多边形 8 2. 检查多边形顶点的凸凹性 9 3. 判断多边形是否凸多边形 9 4. 求多边形面积 9 5. 判断多边形顶点的排列方向,方法一 10 6. 判断多边形顶点的排列方向,方法二 10 7. 射线法判断点是否在多边形内 10 8. 判断点是否在凸多边形内 11 9. 寻找点集的graham算法 12 10.寻找点集凸包的卷包裹法 13 11.判断线段是否在多边形内 14 12.求简单多边形的重心 15 13.求凸多边形的重心 17 14.求肯定在给定多边形内的一个点 17 15.求从多边形外一点出发到该多边形的切线 18 16.判断多边形的核是否存在 19 ㈣ 圆的基本运算 1 .点是否在圆内 20 2 .求不共线的三点所确定的圆 21 ㈤ 矩形的基本运算 1.已知矩形三点坐标,求第4点坐标 22 ㈥ 常用算法的描述 22 ㈦ 补充 1.两圆关系: 24 2.判断圆是否在矩形内: 24 3.点到平面的距离: 25 4.点是否在直线同侧: 25 5.镜面反射线: 25 6.矩形包含: 26 7.两圆交点: 27 8.两圆公共面积: 28 9. 圆和直线关系: 29 10. 内切圆: 30 11. 求切点: 31 12. 线段的左右旋: 31 13.公式: 32
Date : 2009-04-13 Size : 12.87kb User : wangsiman66@sohu.com

DL : 0
爱因斯坦在20世纪初出的这个谜语。他说世界上有98%的人答不出来。某家公司在面试应聘者时借用了爱因斯坦的这个IQ题,考查应聘者的IQ,现在我们暂且不去讨论这个公司用这样的题目来考查应聘者的IQ有多“变态”,如果是你,拿到了这样的笔试题目,你能做得出来吗?   1、在一条街上,有5座房子,喷了5种颜色。   2、每个房里住着不同国籍的人   3、每个人喝不同的饮料,抽不同品牌的香烟,养不同的宠物   问题是:谁养鱼?   提示:   1、英国人住红色房子   2、瑞典人养狗   3、丹麦人喝茶   4、绿色房子在白色房子左面   5、绿色房子主人喝咖啡   6、抽Pall Mall 香烟的人养鸟   7、黄色房子主人抽Dunhill 香烟   8、住在中间房子的人喝牛奶   9、 挪威人住第一间房   10、抽Blends香烟的人住在养猫的人隔壁   11、养马的人住抽Dunhill 香烟的人隔壁   12、抽Blue Master的人喝啤酒   13、德国人抽Prince香烟   14、挪威人住蓝色房子隔壁   15、抽Blends香烟的人有一个喝水的邻居   以上是爱因斯坦在20世纪初出的这个谜语。他说世界上有98%的人答不出来。 用递归算法实现-Einstein in the early 20th century out of this riddle. He said the world have 98% of the people not answer. A company in interviews when candidates use Einstein's IQ that, to investigate the IQ candidates, we will put aside the discussion of the company do not use this topic to test the IQ candidates how "abnormal", if you get such a written subject, can you come up with? ? One, in a street, five houses, sprayed the five colors. Two, every room of different nationalities lived three people each drink different drinks, pumping different brands of cigarettes, raising the pet question is : Who fish? Tip : 1, the British Red lived two houses, three dogs Sweden, Denmark, four tea, green house in the house left five white, green coffee house owner 6, pumping Pall Mall cigarettes be
Date : 2025-12-25 Size : 14kb User : 李东

DL : 0
细胞分裂问题 某种生命周期为5小时的水藻细胞繁殖能力很强。新细胞经过两小时变成成熟细胞,并分裂出一个新细胞。第三小时分裂能力最强,可以又分裂出两个新细胞,第四小时又分裂出一个新细胞。五小时后死亡。 (1)假定开始只有一个新水藻细胞,分别输出从1至30小时后的细胞总数。(屏幕输出结果即可) (2)一个新水藻细胞100小时后变成多少个细胞?(屏幕输出结果即可) (提示:1至6小时后的细胞总数分别为:1,2,4,6,9,16)-The issue of cell division of a life cycle for five hours of algae cells ability to reproduce strong. After two hours of new cells into mature cells, and to split up a new cell. Most capable of splitting the third hour, you can also split out the two new cells, the fourth hour and split up a new cell. Died after 5 hours. (1) the assumption that only the beginning of a new algae cells, respectively, output from 1-30 hours after the total number of cells. (Screen output can be) (2) a new algae cells after 100 hours into the number of cells? (The screen can be output) (NOTE: After 1-6 hours the total number of cells are: 1,2,4,6,9,16)
Date : 2025-12-25 Size : 12kb User : ouyang

DL : 0
1-9数字填入三个分式的a-i中,使a/bc+d/ef+g/hi=1成立-1-9 the number of fill in the three fraction of ai, so that a/bc+ d/ef+ g/hi = 1 to set up
Date : 2025-12-25 Size : 60kb User : tianyin

一个不带界面的计算器,用户只需要在文本文件input.txt中输入计算表达式,即可通过运行程序得到结果,输出在output.txt中; 支持加减乘除,取余数,乘方,括号等等; 如:5+4 = 输出9 5+4*4+9/3 = 输出24 (5+4)*4+9/3 = 输出39 (50+4)*(40 3)+288/(147-3) = 输出56 (50+4)^2*(40 3)+288/(147-3) = 输出2918-Interface without a calculator, the user need only enter a text file input.txt expressions, you can get results by running the program, the output in the output.txt support calculation, check the balance, involution, brackets etc. such as: 5+4 = 9 5+4 Output* 4+9/3 = output 24 (5+4)* 4+9/3 = output 39 (50+4)* (40 3)+288/(147-3) = output 56 (50+4) ^ 2* (40 3)+288/(147-3) = output 2918
Date : 2025-12-25 Size : 14kb User : shiping

DL : 0
9层汉诺塔。有关汉诺塔的源代码。可以试下-9-storey Tower of Hanoi. Tower of Hanoi on the source code. Can try the next
Date : 2025-12-25 Size : 4kb User : 陈庆

To calculate using recursion, expression sqrt(6+2*sqrt(7+3*sqrt(8+4*sqrt(9+-To calculate using recursion, expression sqrt(6+2*sqrt(7+3*sqrt(8+4*sqrt(9+...))))
Date : 2025-12-25 Size : 235kb User : Alex

3.1 线性方程组类设计 3.2 全选主元高斯消去法 3.3 全选主元高斯-约当消去法 3.4 复系数方程组的全选主元高斯消去法 3.5 复系数方程组的全选主元高斯-约当消去法 3.6 求解三对角线方程组的追赶法 3.7 一般带型方程组的求解 3.8 求解对称方程组的分解法 3.9 求解对称正定方程组的平方根法 3.10 求解大型稀疏方程组的全选主元高斯-约当消去法 3.11 求解托伯利兹方程组的列文逊方法 3.12 高斯-赛德尔迭代法 3.13 求解对称正定方程组的共轭梯度法 3.14 求解线性最小二乘问题的豪斯荷尔德变换法 3.15 求解线性最小二乘问题的广义逆法 3.16 病态方程组的求解 -3.1 system of linear equations class designs 3.2 to choose the principal element gaussian elimination 3.3 to elect principal element Gauss- when approximately the elimination 3.4 duplicate coefficient equation sets all choose the principal element gaussian elimination 3.5 duplicate coefficient equation sets to elect principal element Gauss- when approximately the elimination 3.6 solve three diagonal line equation sets to pursue the law 3.7 common belt equation set s solution 3.8 solution symmetrical equation set s resolution 3.9 solution symmetrical Zhengding equation set s square root method 3.10 solution large-scale sparse equation set to elect principal element Gauss- when approximately the elimination 3.11 solutions hold the Belize equation set s row article to abdicate House Holland who method 3.12 Gauss- the Seydell repetitive process 3.13 solution symmetrical Zhengding equation set s conjugate gradient method 3.14 solution linearity is smallest two rides the questionThe German m
Date : 2025-12-25 Size : 70kb User : 王健

6.1 数值积分类设计 6.2 变步长梯形求积法 6.3 变步长辛卜生求积 6.4 自适应梯形求积法 6.5 龙贝格求积法 6.6 计算一维积分的连分式法 6.7 高振荡函数求积法 6.8 勒让德-高斯求积法 6.9 拉盖尔-高斯求积法 6.10 埃尔米特-高斯求积法 -6.1 numerical integrations class design 6.2 change the length of stride trapezoidal mensuration 6.3 change continued fraction law 6.7 high vibration function mensuration 6.8 Legendre who length of stride Xin Bo lives squaring 6.4 auto-adapted trapezoidal mensuration 6.5 Romberg the mensuration 6.6 computation univariate integrals- the Gauss mensuration 6.9 pull geyl- Gauss mensuration 6.10 Hermite especially- the Gauss mensuration
Date : 2025-12-25 Size : 35kb User : 王健

MUMPS_4.9.2 稀疏线性求解,可以求解大型稀疏矩阵-MUMPS_4.9.2 sparse linear solution, can solve a large sparse matrix
Date : 2025-12-25 Size : 2.05mb User : suese

DL : 0
计算流体力学书第九章第二个的源程序,本书是学习计算流体力学的经典入门书,本书稍后上传-Computational Fluid Dynamics chapter 9 the second source, the book is a classic study of computational fluid dynamics primer, the book later upload
Date : 2025-12-25 Size : 252kb User : neiso

空间域复杂形体正演(重力) 1、坐标单位为m。 2、观测面x方向的范围为-26.00~26.00,点数为27个;y方向的范围为-26.00~26.00,线数为27个;z坐标向下为正,其值为0.0。 3、场源体有三个,其参数分别为: 剩余密度,磁化强度,地磁倾角,地磁偏角,x方向起点,x方向终点,y方向起点,y方向终点,z方向起点,z方向终点 0.9,17000,50,5,-4,8,-8,-3,2,7 0.8,34000,50,5,0,7,0,5,3,7 0.7,20000,50,5,-9,-3,4,8,2,7 3、实验要求:计算观测面的重力异常和磁力异常。 -gravity complicated geobody forward calculation
Date : 2025-12-25 Size : 289kb User : 叶青

设定N值,输出N阶螺旋方阵。以四边的数的行列规律为基础,向中间螺旋输出数值。如4则:1 2 3 4 12 13 14 5 11 16 15 6 10 9 8 7 . 完毕。-Set of N values, the output of N-order spiral square. Number of the four sides of the ranks of law, based on the output value to the middle spiral. Such as 4: 1 2 3 4 12 13 14 5 11 16 15 6 10 9 8 7 is completed.
Date : 2025-12-25 Size : 166kb User : 李名

输入一个不确定位数的数字,将其转化罗马数字,用"X","I","II","III","IV","V","VI","VII","VIII","IX"代表0,1,2,3,4,5,6,7,8,9的罗马数字。 程序不是太严谨,和实际的表示(10应该用X表示,五十用C表示等等)也有差距。受定义类型的限制,位数不能无限多。 程序共用了三种方法,注释掉的是两种麻烦并且占内存多(其实可以修改成和第一种方法占内存一样多)的方法-Enter an uncertain number of digits, Roman numerals, with the " X" , " " II " ," III " ," IV " ," V " ," VI, VII, " VIII of " ," IX " on behalf of 0,1,2,3,4,5,6,7,8,9 of Roman numerals. The program is not too rigorous, and practical (10 X represents fifty C represents, etc.) is also a gap. Limit of the defined type, the median can not be unlimited. Program three methods, comment out the two cumbersome and accounted for memory (in fact, could be modified to the first method accounts for as much) memory
Date : 2025-12-25 Size : 9kb User : tanruibao

复数的运算函数库源代码: 1.1 复数类设计 1.2 复数乘法 1.3 复数除法 1.4 复数的模 1.5 复数的根 1.6 复数的实幂指数 1.7 复数的复幂指数 1.8 复数的自然对数 1.9 复数的正弦 1.10 复数的余弦 1.11 复数的正切 -Complex computing library source code: class design complex 1.2 1.1 1.3 complex multiplication of complex numbers complex modulus division 1.4 1.5 1.6 complex is the real root of the power complex of the complex index of 1.7 complex exponent 1.8 1.9 complex natural logarithm of the cosine sine 1.10 1.11 complex tangent complex
Date : 2025-12-25 Size : 38kb User : 王健

2.1 矩阵类设计 2.2 矩阵基础运算 2.3 实矩阵求逆的全选主元高斯-约当法 2.4 复矩阵求逆的全选主元高斯-约当法 2.5 对称正定矩阵的求逆 2.6 托伯利兹矩阵求逆的特兰持方法 2.7 求行列式值的全选主元高斯消去法 2.8 求矩阵秩的全选主元高斯消去法 2.9 对称正定矩阵的乔里斯基分解与行列式的求值 2.10 矩阵的三角分解 2.11 一般实矩阵的QR分解 2.12 一般实矩阵的奇异值分解 2.13 求广义逆的奇异值分解法 2.14 约化对称矩阵为对称三对角阵的豪斯荷尔德变换法 2.15 实对称三对角阵的全部特征值与特征向量的计算 2.16 约化一般实矩阵为赫申伯格矩阵的初等相似变换法 2.17 求赫申伯格矩阵全部特征值的QR方法 2.18 求实对称矩阵特征值与特征向量的雅可比法 2.19 求实对称矩阵特征值与特征向量的雅可比过关法 -2.1 matrices class design 2.2 matrix foundations to operate 2.3 solid matrix inversions to elect principal element Gauss- when approximately the law 2.4 duplicate matrix inversions all elect principal element Gauss- when approximately the law 2.5 symmetrical Zhengding matrices ask the counter 2.6 request Belize matrix inversion to hold method 2.7 to ask the determinant value especially blue to choose the principal element gaussian elimination 2.8 to ask the matrix order to elect principal element gaussian elimination 2.9 symmetrical Zhengding matrices Jory Siji to decompose and the determinant evaluation 2.10 matrix triangles decompose 2.11 general solid matrices QR to decompose 2.12 general solid matrices the singular values to decompose 2.13 to ask the generalized counter singular value resolution 2.14 reduction symmetrical matrices for the symmetrical three opposite angle House Holland GermanyA method of transformation 2.15 solid symmetrical three opposite angle complete characteris
Date : 2025-12-25 Size : 64kb User : 王健

4.1 非线性方程与方程组类设计 4.2 求非线性方程实根的对分法 4.3 求非线性方程一个实根的牛顿法 4.4 求非线性方程一个实根的埃特金迭代法 4.5 求非线性方程一个实根的连分式解法 4.6 求实系数代数方程全部根的QR方法 4.7 求实系数代数方程全部根的牛顿-下山法 4.8 求复系数代数方程全部根的牛顿-下山法 4.9 求非线性方程组一组实根的梯度法 4.10 求非线性方程组一组实根的拟牛顿法 4.11 求非线性方程组最小二乘解的广义逆法 4.12 求非线性方程一个实根的蒙特卡洛法 4.13 求实函数或复函数方程的一个复根的蒙特卡洛法 4.14 求非线性方程组一组实根的蒙特卡洛法 -4.1 nonlinear equation and the equation set class designs 4.2 to ask the nonlinear equation real roots the binary search method 4.3 to ask nonlinear equation real roots the Newton law 4.4 to ask nonlinear equation real roots the Etkin repetitive process 4.5 to ask nonlinear equation real roots the continued fraction solution 4.6 to strive for realism the coefficient algebraic equation complete root QR method 4.7 to strive for realism coefficient algebraic equation complete root Newton- to descend the mountain Newton who law 4.8 ask the duplicate coefficient algebraic equation complete root- to descend the mountain law 4.9 to ask nonlinear simultaneous equation group of real roots the gradient method 4.10 to ask nonlinear simultaneous equation group of real roots to plan the Newton law 4.11 to ask the nonlinear simultaneous equation to be smallest two rides the solution generalized counter method 4.12 to ask nonlinear equation real rootsThe Monte-Carlo law 4.13 strive for realism the fu
Date : 2025-12-25 Size : 74kb User : 王健

5.1 插值类设计 5.2 一元全区间不等距插值 5.3 一元全区间等距插值 5,4 一元三点不等距插值 5.5 一元三点等距插值 5.6 连分式不等距插值 5.7 连分式等距插值 5.8 埃尔米特不等距插值 5.9 埃尔米特等距插值 5.10 埃特金不等距逐步插值 5.11 埃特金等距逐步插值 5.12 光滑不等距插值 5.13 光滑等距插值 5.14 第一种边界条件的三次样条函数插值、微商与积分 5.15 第二种边界条件的三次样条函数插值、微商与积分 5.16 第三种边界条件的三次样条函数插值、微商与积分 5.17 二元三点插值 5.18 二元全区间插值 -5.1 interpolations class design between a 5.2 Yuan entire district not between an equal-space interpolation 5.3 Yuan entire district an equal-space interpolation 5,4 Yuan three spot not equal-space interpolation 5.5 Yuan three equal-space interpolation 5.6 continued fraction not equal-space interpolation 5.7 continued fraction equal-space interpolation 5.8 Hermite not equal-space interpolation 5.9 Hermite equal-space interpolation 5.10 Etkin not the equal-space gradually interpolation 5.11 Etkin equal-space gradually interpolation 5.12 smooth not equal-space interpolation 5.13 smooth equal-space interpolation 5.14 first kind of boundary condition three spline function interpolation, the derivative and the integral 5.15 second kind of boundary condition three spline function interpolation, the derivative and the integral 5.16 third kind of boundary condition three spline function interpolation, the derivative and the integral between 5.17 dual three interpolation 5.18 dual entire distri
Date : 2025-12-25 Size : 47kb User : 王健

1.实现将输入的string字符串反序输出。 2.一个数如果恰好等于它的因子之和,这个数就称为"完数"。例如6 = 1+2+3找出10000以内的所有完数。 3.下面程序的功能是将一个4×4的数组进行逆时针旋转90度后输出,要求原始数组的数据随机输入,新数组以4行4列的方式输出 4.编程打印杨辉三角。 5.实现将输入的字符串反序输出 6.实现字符串拷贝函数strcopy(char*src,char* dest) 7.求近似Pi值。可以用公式(如:pi/2 = 1+1/3+1/3*2/5 + 1/3*2/5*3/7 + 1/3*2/5*3/7*4/9+.....) 8.输入一个字符串,判断其是否为回文。回文字符串是指从左到右读和从右到左读完全相同的字符串。-1 to achieve the reverse order of the input string string output. 2 If a number is exactly equal to the sum of its factors, this number is called a "complete count." For example, 6 = 1+2+3 identify all End counts less than 10,000. 3 The following procedure is the function of a 4 × 4 array rotated 90 degrees counter-clockwise output, requiring random input data in the original array, the new array with 4 rows 4 way output 4 Programming printing Pascal s Triangle. 5 to achieve the output of the input string in reverse order 6. Achieve string copy function strcopy (char* src, char* dest) 7 Find the approximate value of Pi. Can use the formula (eg: pi/2 = 1+1/3+1/3* 2/5+ 1/3* 2/5* 3/7+ 1/3* 2/5* 3/7* 4/9+ .....) 8 Enter a string to determine whether it is a palindrome. Palindrome string is read from left to right and right to left reading the same string.
Date : 2025-12-25 Size : 460kb User :

DL : 0
输出“魔方矩阵”。所谓魔方阵是指这样的矩阵,它的每一行、每一列和对角线之和均相等。例如,三界魔方阵为 8 1 6 3 5 7 4 9 2 要求输出1 -n*n的自然数构成的魔方阵。-Cube matrix output . The so-called magic matrix is the matrix, which each row, each column and diagonal and are equal. For example, three cube array 816 357 492 Magic square requirements natural number 1 -n*n output form.
Date : 2025-12-25 Size : 5kb User : 亓刚
« 12 3 4 5 6 7 8 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.