CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - objective c
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Sub Category
Compress-Decompress algrithms
STL
Data structs
Algorithm
AI-NN-PR
matlab
Bio-Recognize
Crypt_Decrypt algrithms
mathematica
Maple
DataMining
Big Data
comsol
physical calculation
chemical calculation
simulation modeling
Search - objective c - List
[
Mathimatics-Numerical algorithms
]
SeekNumber
DL : 0
C#寻找素数 素数寻找问题由来已久,一直是一些数学家追求的目的。-C#-finding prime numbers to find a few long-standing problem, mathematicians have been some of the objective pursued.
Date
: 2008-10-13
Size
: 2.29kb
User
:
小雨点儿
[
Mathimatics-Numerical algorithms
]
SeekNumber
DL : 0
C#寻找素数 素数寻找问题由来已久,一直是一些数学家追求的目的。-C#-finding prime numbers to find a few long-standing problem, mathematicians have been some of the objective pursued.
Date
: 2026-01-07
Size
: 2kb
User
:
小雨点儿
[
Mathimatics-Numerical algorithms
]
simplicityAlgorithm3
DL : 0
/*用单纯形算法求解多元函数极值计算机程序代码*/ /************************ *试用单纯形法求目标函数: *f(x)= 4(x1 -5)*(x1 -5) + (x2 -6)*(x1 -5) *的极小值 *************************/-/* Use simplex algorithm for multi-function extremum computer code*//************************* trial simplex method for the objective function :* f (x) = 4 (5 x1)* (x1 5) (6 x2)* (x1-5)* minimums*************************/
Date
: 2026-01-07
Size
: 168kb
User
:
刘向
[
Mathimatics-Numerical algorithms
]
nsga-original
DL : 0
原始非支配多目标遗传算法,适用于多个目标函数的输入,多个变量的输入,非常经典的,基于非支配解排序。-original non-dominant multi-objective genetic algorithm applied to a number of objective function input, a number of input variables. very classic, based on the non-dominant solution ranking.
Date
: 2026-01-07
Size
: 311kb
User
:
academic
[
Mathimatics-Numerical algorithms
]
dancunx
DL : 0
这是一个最优化程序,利用单纯形方法求解目标函数极值,是用C语言编写-This is an optimization process, using the simplex method for solving extremum objective function is the use of C language
Date
: 2026-01-07
Size
: 22kb
User
:
吴江
[
Mathimatics-Numerical algorithms
]
dp_tsp
DL : 0
TSP问题的动态规划求解。问题描述:旅行商问题,即TSP问题(Travelling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。 -TSP dynamic programming to solve the problem. Description of the problem: traveling salesman problem, namely TSP problem (Travelling Salesman Problem) is a well-known field of mathematics problems. Assuming there is a travel businessmen to visit n cities, he must choose which path to go, via the restriction is to visit each city only once and the last to go back to the original departure city. Path selection objective is to get the path distance for all paths are the minimum.
Date
: 2026-01-07
Size
: 1021kb
User
:
黄艺敏
[
Mathimatics-Numerical algorithms
]
DC-motors-SimPwerSystems
DL : 0
It is about the modeling and the simulation of the D.C machines under the Matlab software into which the libraries Simulink and SimPowerSystems are integrated. These libraries contain blocks of modeling which allow indicates it, simulation, the implementation and the system monitoring of communication and processing of the signal. The objective thus is to study the operation of the various types of D.C machines.
Date
: 2026-01-07
Size
: 22kb
User
:
Youcef
[
Mathimatics-Numerical algorithms
]
NSGA
DL : 0
NSGA-II 基于非支配排序的多目标优化算法,实现(c语言实现)-NSGA-II multi objective optimization algorithm based on non dominated sorting, implementation (C language)
Date
: 2026-01-07
Size
: 3kb
User
:
王朋
[
Mathimatics-Numerical algorithms
]
MOEAD_KNAPSACK
DL : 0
MULTI OBJECTIVE KNAPSACK PROBLEMS IS BUILT IN VISUAL C-MULTI OBJECTIVE KNAPSACK PROBLEMS IS BUILT IN VISUAL CPP
Date
: 2026-01-07
Size
: 133kb
User
:
abdirahim
[
Mathimatics-Numerical algorithms
]
main
DL : 0
遗传算法简单实现 基于c++编写 求解目标函数极值(Genetic algorithm is simple, and is based on c++ to solve the extreme value of objective function.)
Date
: 2026-01-07
Size
: 1kb
User
:
cc18409
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.