Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - SVR
Search - SVR - List
这是一个师兄编的程序,用于多类分类和函数回归。
Date : 2008-10-13 Size : 138.61kb User : 王一笑

这是一个师兄编的程序,用于多类分类和函数回归。-This is a senior allocation procedures, for use in multi-category classification and regression function.
Date : 2025-12-25 Size : 138kb User : 王一笑

本人编的一个程序,用来求解支持矢量,可以用于分类和回归。-I made a procedure to solve the support vector, can be used for classification and regression.
Date : 2025-12-25 Size : 1.6mb User : 王一笑

基于线性规划的回归支持向量机源程序,开发环境Visual C++6.0,控制台程序-Based on linear programming support vector machine regression source code, development environment, Visual C++ 6.0, Console Application
Date : 2025-12-25 Size : 69kb User : 谢宏

基于遗传算法的支持向量回归机参数选取,针对支持向量回归机( support vector regression , SVR) 的参数选择问题,提出了基于遗传算法的 SVR 参数自动确定方法。分-Based on genetic algorithm parameter selection of Support Vector Regression
Date : 2025-12-25 Size : 230kb User : 王明

79419096svr一维支持向量机回归以及二维支持向量机回归-79419096svr one-dimensional support vector regression and two-dimensional support vector regression
Date : 2025-12-25 Size : 230kb User : myzone

smo算法是与svr(支持向量机回归)和svc(支持向量机分类)具有相似数学形式,并在此基础上提出的一种用于SVR的简化算法。-smo algorithm is svr (support vector machine regression) and svc (SVM) with similar mathematical form, and puts forward a simplified algorithm for SVR.
Date : 2025-12-25 Size : 1kb User : heyufeng

 -s svm类型:SVM设置类型(默认0)   0 -- C-SVC   1 --v-SVC   2 – 一类SVM   3 -- e -SVR   4 -- v-SVR   -t 核函数类型:核函数设置类型(默认2)   0 – 线性:u v   1 – 多项式:(r*u v + coef0)^degree   2 – RBF函数:exp(-r|u-v|^2)   3 –sigmoid:tanh(r*u v + coef0)   -d degree:核函数中的degree设置(针对多项式核函数)(默认3)   -g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/ k)   -r coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)   -c cost:设置C-SVC,e -SVR和v-SVR的参数(损失函数)(默认1)   -n nu:设置v-SVC,一类SVM和v- SVR的参数(默认0.5)   -p p:设置e -SVR 中损失函数p的值(默认0.1)   -m cachesize:设置cache内存大小,以MB为单位(默认40)   -e eps:设置允许的终止判据(默认0.001)   -h shrinking:是否使用启发式,0或1(默认1)   -wi weight:设置第几类的参数C为weight*C(C-SVC中的C)(默认1)   -v n: n-fold交互检验模式,n为fold的个数,必须大于等于2--s svm_type : set type of SVM (default 0) 0-- C-SVC 1-- nu-SVC 2-- one-class SVM 3-- epsilon-SVR 4-- nu-SVR -t kernel_type : set type of kernel function (default 2) 0-- linear: u *v 1-- polynomial: (gamma*u *v+ coef0)^degree 2-- radial basis function: exp(-gamma*|u-v|^2) 3-- sigmoid: tanh(gamma*u *v+ coef0) 4-- precomputed kernel (kernel values in training_instance_matrix) -d degree : set degree in kernel function (default 3) -g gamma : set gamma in kernel function (default 1/k) -r coef0 : set coef0 in kernel function (default 0) -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) -m cachesize : set cache memory size in MB (default 100) -e epsilon : set tolerance of termination criterion (default 0.001) -h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1) -b
Date : 2025-12-25 Size : 17kb User : little863

新的支持向量机回归算法 An Accurate Online Support Vector Regression (AOSVR) algorithm is introduced, which efficiently updates a trained SVR function whenever a sample is added to or removed from the training set. The updated SVR function is identical to the one that would be produced by a batch algorithm. Applications of AOSVR both in an online and in a crossvalidation scenario are presented-Accurate Online Support Vector Regression An Accurate Online Support Vector Regression (AOSVR) algorithm is introduced, which efficiently updates a trained SVR function whenever a sample is added to or removed from the training set. The updated SVR function is identical to the one that would be produced by a batch algorithm. Applications of AOSVR both in an online and in a crossvalidation scenario are presented
Date : 2025-12-25 Size : 251kb User : xing yongzhong

基于SVR的期权价格预测模型The option price based on SVR prediction model-The option price based on SVR prediction model
Date : 2025-12-25 Size : 637kb User :

简单的支持向量机回归应用,应用于球磨机实验中。(Simple support vector machine regression application)
Date : 2025-12-25 Size : 1kb User : 小克·

实现在线的SVR算法,python版本。(online svr, python version.)
Date : 2025-12-25 Size : 1.35mb User : brbaaa

基于时间序列分析ARIMA和SVR组合模型的预测(Prediction of ARIMA and SVR combined models based on time series analysis)
Date : 2025-12-25 Size : 131kb User : yongqiang123
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.