Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - derivative
Search - derivative - List
彩色图像做差运算,并分RGB 以及亮度进行直方图统计,计算得到二阶导数为零的点,完全自主创作,效果理想-color image so poor operation and the hours for RGB and luminance histogram statistics, calculated second-order derivative of the zero point, entirely independent creation, the result is satisfactory
Date : 2008-10-13 Size : 1.33kb User : mikle

求图像的微分程序,包括横向微分,纵向微分,一次,二次微分等。-image for the differential procedures, including the differential horizontal and vertical differential once, such as second derivative.
Date : 2008-10-13 Size : 1.25mb User : lanmao

旋转不变的导数计算,在图像处理方面用途较广
Date : 2008-10-13 Size : 6.47kb User : sssss

图像高斯滤波,再边缘检测中,首先要用到高斯滤波-images Gaussian filtering, edge detection again, the first use of the Gaussian filter! !
Date : 2026-01-11 Size : 172kb User : 柳杨

彩色图像做差运算,并分RGB 以及亮度进行直方图统计,计算得到二阶导数为零的点,完全自主创作,效果理想-color image so poor operation and the hours for RGB and luminance histogram statistics, calculated second-order derivative of the zero point, entirely independent creation, the result is satisfactory
Date : 2026-01-11 Size : 1kb User : mikle

求图像的微分程序,包括横向微分,纵向微分,一次,二次微分等。-image for the differential procedures, including the differential horizontal and vertical differential once, such as second derivative.
Date : 2026-01-11 Size : 1.25mb User : lanmao

梯度锐化是利用二阶导的锐化,也是一种较好的的算法-Gradient sharpening is to use the second derivative of the sharpening, but also a better algorithm
Date : 2026-01-11 Size : 55kb User : 李艳

旋转不变的导数计算,在图像处理方面用途较广-Rotation-invariant derivative terms, in the image processing aspects of the broader purposes
Date : 2026-01-11 Size : 6kb User :

仿射变换法求深度信息,目前最好的方法 function [Z,D11,D12,D22] = diffusion_kernel_function(gx,gy,im) gx,gy 为x,y方向偏导数 Z 为恢复出来的是深度信息。 函数适应于从 图像法相信息恢复高度信息-Affine transformation method the depth of information, is currently the best way to function [Z, D11, D12, D22] = diffusion_kernel_function (gx, gy, im) gx, gy for x, y direction of the partial derivative of Z is out to restore the depth of information. Function adapted from the image information to resume a high degree of information law
Date : 2026-01-11 Size : 1kb User : chengyue

通过高斯函数导数检测图像边缘,实质是方向可调小波变换检测图像边缘。-Gaussian function through derivative edge detection in real terms is Steerable Wavelet image edge detection.
Date : 2026-01-11 Size : 120kb User : alexandar

这是一个利用导数光谱分析的方法检测特征吸收波段的源代码,可供从事高光谱图像处理的朋友分享。-This is a use of derivative spectroscopy method of the characteristic absorption band of the source code, available to engage in high-spectral image processing share.
Date : 2026-01-11 Size : 7kb User : jenna

Laplacian 算子是一种常用的二阶导数算子,实际中可根据二阶导数算子过零点的性质来确定边缘的位置。Laplacian 算子对图像中的噪声相当的敏感-Laplacian operator is a common second derivative operator。 In practice ,That the second derivative operator must pass zero-crossing point determines the nature of the location of the edge. Laplacian operator is quite sensitive to the image noise
Date : 2026-01-11 Size : 753kb User : 蓝水晶

数字图像的边缘检测 本科毕业设计(边缘检测是数字图像处理中的重要内容。本文首先对图像的边缘检测的各种算法和算子做了总结和分析。Canny最早提出了边缘检测的三条连续准则:最优检测结果、最优定位和低重复响应,并在这些准则的基础上得到了“最优线性滤波器”―高斯函数的一阶导数。经过十几年的发展,目前已经有了对这个准则的很多改进,本文也对这个方面的工作做了小结。Demigny在理论分析和实践的基础上给出了边缘检测的离散准则,并且证明在离散准则中Canny提出的第三个准则可以被阀值操作所取代。本文利用了数值方法求出了Demigny离散准则下阶梯形边缘检测的最优线性滤波器和对应着它的平滑算子。利用这个算子和Canny边缘检测方法得到了一个完整的边缘检测算法并用VC++实现了这种算法.从算法对大量图像边缘检测的结果来看,这种算法虽然简单但是效果很好,是边缘检测的一种很好的实用方法。-Edge detection is important in image procession. This paper made a summary and analysis of edge detecting algorithm and edge detector. Canny has proposed three continuous criteria to compare the performance of different filters: good detection, good localization and low-responses. Based on these criteria he got optimal filter for edge detection: derivative of Gaussian function. After more than ten years research, Canny’s theory has been ameliorated in many aspects, this paper also made a review of it. Based on the practice and theory. Demigny gave three discrete criteria for edge detection like Canny’s criteria and he has proofed that the third criterion can be replaced by an appropriate thresholding operation. This paper used numerical method to get the optimal filter and smooth operator under the Demigny’s criteria. Then I combine these filters and Canny’s edge detecting technique to get an integrated edge detecting algorithm. I have implemented the algorithm using VC++. From the res
Date : 2026-01-11 Size : 1.33mb User : swx

对图像进行微分运算,可以纵向微分,横向微分,双向一次微分和二次微分得到微分结果是边缘化,是边缘化处理的很好算法。-Differential operator of the image can be differential vertical and horizontal differential, two-way first derivative and second derivative to be a result of differential marginalization is a good method to deal with marginalization.
Date : 2026-01-11 Size : 2.54mb User : 姚伟

关于Steerable filtering decomposition 的matlab程序,- STEERGAUSS Implements a steerable Gaussian filter. This m-file can be used to evaluate the first directional derivative of an image, using the method outlined in: W. T. Freeman and E. H. Adelson, "The Design and Use of Steerable Filters", IEEE PAMI, 1991.
Date : 2026-01-11 Size : 379kb User : 张宇

基于拓扑导数的图像分割算法,利用某一函数计算图像拓扑导数,并为每个像素归类,从而达到分割效果。-Topology-based derivative of the image segmentation algorithm, using a function derivative calculation of the image topology, and to classify each pixel to achieve the segmentation results.
Date : 2026-01-11 Size : 47kb User : meng

DL : 0
边缘特征的提取就是求图像梯度的局部最大值和方向。实际计算中,以微分算子的形式表示,并采用快速卷积函数来实现。常用的算子有微分算子,拉普拉斯算子,Canny算子等。其中Canny边缘检测是一种较新的边缘检测算子,具有较好的边缘检测性能,得到越来越广泛的应用。Canny边缘检测法利用高斯函数的一阶微分,它能在噪声抑制和边缘检测之间取得较好的平衡-Edge feature extraction is to seek the local maximum of image gradient and orientation. The actual calculation to the form of differential operator representation, and using fast convolution function to achieve. Commonly used operators are differential operators, Laplace operator, Canny operator and so on. Canny edge detection which is a relatively new edge detection operator, and has good edge detection performance, get more and more widely used. Canny edge detection method using first derivative of Gaussian function, it can in the noise suppression and edge detection to achieve a better balance between
Date : 2026-01-11 Size : 1kb User : xiaowei

本文介绍了图像处理中的锐化技术,介绍了多种方法,包括边缘检测、一阶微分、二阶微分等。 图像的锐化技术是图像处理中必不可少的部分,学会如何锐化图像将使我们的图像处理软件设计更加完美。-This article describes a sharpening of the image processing technology, introduced a variety of methods, including edge detection, first derivative, second derivative and so on. Image sharpening technology is an essential part of image processing, to learn how to sharpen the image processing software will allow us to design more perfect.
Date : 2026-01-11 Size : 1.76mb User : fdevil

最优的阶梯型边缘检测算法(canny边缘检测) 1.Canny边缘检测基本原理 (1)图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置。 (2)根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny边缘检测算子。 (3)类似与Marr(LoG)边缘检测方法,也属于先平滑后求导数的方法。 2.Canny边缘检测算法: step1:用高斯滤波器平滑图象; step2:用一阶偏导的有限差分来计算梯度的幅值和方向; step3:对梯度幅值进行非极大值抑制; step4:用双阈值算法检测和连接边缘。 step1:高斯平滑函数 -The optimal type stair edge detection algorithm (canny edge detection) 1 Canny edge detection principle (1) the image edge detection must meet two conditions: one can effectively reduce the noise, 2 must try to accurately determine edge position. (2) according to the signal-to-noise ratio and the product localization estimate, get optimal approximation operator. This is the Canny edge detection operators. (3) similar to Marr (LoG) edge detection method, also belongs to the first derivative method for smooth after. 2 Canny edge detection algorithm: Step1: using gauss filter smooth image, Step2: a partial derivatives with finite difference to calculate gradient value and direction, Step3: a gradient of maximum inhibition, Step4: double threshold algorithm of edge detection and connection. Step1: gaussian smooth functions
Date : 2026-01-11 Size : 1.21mb User : lx

改进后的非线性各向异性扩散用于图像中的保边去噪,增加了二阶导数,是滤波效果更好-Improved nonlinear anisotropic diffusion for edge preserving image denoising, an increase of second derivative, is a better filtering effect
Date : 2026-01-11 Size : 112kb User : quyong
« 12 3 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.