Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - 1 to 4 u
Search - 1 to 4 u - List
图像处理过程经常用到的部分代码 大家可参考-Image processing frequently used part of the code can refer to U.S.
Date : 2026-01-09 Size : 51kb User : 赵兵

图像的几何运算方法 图像处理相关 大家可以-Image geometric image processing algorithms can be related to U.S.
Date : 2026-01-09 Size : 516kb User : 孟飞

android开发入门程序,进行简单的手机显示,是初学者最好的学习资料,大家来下载-android development of entry procedures, a simple cell phone show that beginners are the best study information to U.S. download
Date : 2026-01-09 Size : 28kb User : wangyong

使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。-When used in this Example to open directory pic in the picture, and then click the button followed by " U-turn" , " 1" , " 2" , " 3" , " 4" and " 5" , you can achieve precise positioning of the plate.
Date : 2026-01-09 Size : 3.6mb User : arlenesmile

针对CT 医学图像和MR I 医学图像成像特点, 提出了基于快速整数提升小波变换的融合方法。在CT 和 MR I 两幅医学图像配准的前提下, 利用提升小波变换把图像分解成低频和高频子图像, 对于小波变换后的高频 子图像, 选择区域标准差大的作为融合后的子图像 对于低频子图像, 采用加权融合, 最后进行小波逆变换, 得到 融合后的图像, 并对融合后图像用信息熵、平均梯度、相关系数的指标进行评价。实验结果表明, 基于快速整数提 升小波变换融合中, 小波高低频系数采用不同的规则能够取得更好的融合效果, 其轮廓清晰。该算法能够提升融 合后的医学图像信息量, 同时有效地保护图像的细节信息, 在执行时间和图像质量上均优于普通小波算法。-A imed at the characterist ics of CT andMR Imedical images, a new image fu sion al2 go rithm based on the fast in t lif t ing w avelet t ran sfo rm s is p ropo sed. Two o riginal images are decompo sed by the fast in t lif t ing w avelet t ran sfo rm s. The fu sion ru le based on the max imum standard deviat ion value variance is u sed to fu se the h igh f requency sub2image, w h ile a w eigh t2 ed average fu sed ru le is app lied by coeff icien t s of the low f requency. F inally, the fu sion image is recon st ructed fo r perfo rm ing inverse fast in t lif t ing w avelet t ran sfo rm s. The fu sion image is evaluated by en t ropy, average gradien t, and co rrelat ion coeff icien t s. Experimen tal resu lt show s that the fu sion image hasmo re info rmat ion than o riginal images and imp roves the quali2 ty of o riginal images. M eanw h ile, the fu sion image p ro tect s detail characterist ics of the image, thu s the real2t ime p rocess and image qualit ies are w ell than tha
Date : 2026-01-09 Size : 782kb User : 杨颜华

1. 用DFS判断一个无向图是否是连通图; 2. 为有向图的边分类,将它们的边分为前向边、后向边和交叉边; 3. 用DFS和点消除求有向图的拓扑排序; 4. 判断有向图是不是强连通图,若不是,求强连通分量; 5. 判断有向图是不是半连同图; 6. 判断有向图是不是单连通图; 7. 判断无向图是不是双连通图。 通过以上编程对DFS的应用,进一步了解DFS的算法及它所代表的算法思想。 -1. Using DFS to test if a given undirected graph is connected or not. 2. Classify the edges of a directed graph into tree edges, back edges, forward edges or cross edges by a depth-first traversal of the graph. If the given graph is undirected, classify the edges into tree edges and back edges. And verify if a directed or undirected graph has a cycle. 3. Compute the topological order of a directed graph using both DFS algorithm and source removal algorithm. 4. A strongly connected graph is a directed graph with every pair of vertices reachable from each other. A strongly connected component C of a directed graph G is a subset of maximal vertices such that every pair of vertices in the subset are reachable from each other. A strongly connected component graph GSCC of a graph G is a directed graph that each component C of G is considered as a single vertex in GSCC and there is an edge between components C1 and C2 if there exist an edge (u, v) in the graph G with u belongs to C1 and v
Date : 2026-01-09 Size : 10kb User : 卢竹江

计算梯度向量Grad U和圆饼的移动规则:将所有的力都正因分解,分解成x轴方向和y轴方向的力,整个问题就简单化了,通过分别求出x轴方向和y轴方向的力之和,就可以知道该圆饼将要移动的轨迹,而x轴方向和y轴方向的合力方向应该就是该圆饼的梯度向量的方向。而所有圆饼的梯度向量就组成了Grad U-Because of all the forces are decomposed into the x-axis direction and the y-axis direction of the force, the whole problem simplistic, were obtained by x-axis direction and the y-axis direction of the force of and to know that the pie track to be moved, and x-axis direction and the y-axis direction of the force should be the vector of the pie the direction of the gradient. All round cake on the formation of the gradient vector Grad U
Date : 2026-01-09 Size : 1kb User : jerry

传统的图像修复算法速度慢, 对大面积的破损区域修复效果较差. 本文针对 这一缺点, 首先对待修复图像进行小波分解, 使得图像的破损区域在低频部分留下 的空洞大为缩小, 然后利用基于快速行进法( FM M) 的图像修复算法修复低频部分 的破损区域, 再利用低频信息来预测相应的高频信息, 最后进行小波重构, 并对受 损部分进行自然化处理, 得到修复的图像. 仿真实验结果表明, 本文提出的算法速 度快, 修复结果基本恢复了原有的视觉效果.-Chan T , Ng M , Yan A, et a l. Super resolutio n Image Reco nstr uct ion Using Fast Inpa inting Algo rithms [ J] . Applied and Computatio nal Harmonic Analy sis, 2007, 23( 1) : 3~24. [ 7]  Chan T, Shen, J, Zho u Hao-M in, et a l. To tal Var iat ion Wavelet Inpainting [ J] . Jo ur nal o f Mat hema tical Imag e and Vision, 2006, 25( 1) : 107~125. [ 8]  Alex andr ua Telea. An Im age Inpainting Technique
Date : 2026-01-09 Size : 365kb User : 孙红娟

LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式-LabVIEW is a kind of program development environment, developed by the U.S. national instrument (NI), similar to C and BASIC development environment, but the LabVIEW and other computer language is a significant difference: the other computer language is the language based on text generate code, and the use of LabVIEW is a graphical editing language G program, the program is in the form of block diagram
Date : 2026-01-09 Size : 4.26mb User : 魏庭松

一、 计算图象的频谱函数 设计图象120*30/256*256;选用Matlab函数直接调用实现。 二、根据计算证明傅立叶变换的性质 1, 共轭对称性: F(u,v)=F*(-u,-v) ; 三、图象的频域滤波 1, 设计一个指数低通滤波器,对两图象(f1(x,y)为30*30/256*256的图象;f2(x,y)=p3-02图象)进行低通滤波,观察分析空域图象和频谱分布的变化。 四、图象变换比较 利用现有的离散傅立叶变换、离散余弦变换、Walsh-Hadamard变换对同一图象实施变换,比较三种变换所得到的频谱。(1. The spectral function of the computed image Design image: 120*30/256* 256; Use Matlab function to call the implementation directly. The properties of Fourier transform are proved by calculation 1. Conjugate symmetry: F (u, v) = F * (- u, v); 3. Frequency domain filtering of images 1. Design an exponential low-pass filter with two images (f1 (x,y) as 30*30/256* 256. F2 (x,y)=p3-02 image) to conduct low pass filtering to observe the change of spatial image and spectral distribution. 4. Comparison of image transformation Using the existing discrete Fourier transform, discrete cosine transform and Walsh-Hadamard transform to transform the same image, compare the spectrum obtained by three kinds of transformations.)
Date : 2026-01-09 Size : 181kb User : LIMBO2K
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.