CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - spectrum of fourier in matlab
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Sub Category
GUI Develop
Windows Kernel
WinSock-NDIS
Driver Develop
ADO-ODBC
GDI-Bitmap
CSharp
.net
Multimedia Develop
Communication
Shell api
ActiveX/DCOM/ATL
IME Develop
ISAPI-IE
Hook api
Screen saver
DirextX
Process-Thread
Console
File Operate
Printing program
Multi Monitor
DNA
Other
Search - spectrum of fourier in matlab - List
[
Other
]
松斋 经典功率谱估计
DL : 0
接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 -Connection also known as cycle map, it is random sequence x (n) N observational data as a sequence of limited energy, direct calculation x (n) the discrete Fourier transform, in X (k), then the lesser of the square of the amplitude and divided by N, as the sequence x (n) real power spectrum estimation.
Date
: 2026-01-03
Size
: 9kb
User
:
梁宏波
[
Other
]
FFTfrequencychartisanalytical
DL : 0
1.通过实验加深对快速傅立叶变换(FFT)基本原理的理解。 2.了解FFT点数与频谱分辨率的关系,以及两种加长序列FFT与原序列FFT的关系。 离散傅里叶变换(DFT)和卷积是信号处理中两个最基本也是最常用的运算,它们涉及到信号与系统的分析与综合这一广泛的信号处理领域。实际上卷积与DFT之间有着互通的联系:卷积可化为DFT来实现,其它的许多算法,如相关、滤波和谱估计等都可化为DFT来实现,DFT也可化为卷积来实现。-1. Deepen the experimental fast Fourier transform (FFT) the basic tenets of understanding. 2. Understand the FFT spectrum and points of the resolution, and two extended sequence with the original FFT FFT relations. Discrete Fourier Transform (DFT) and the convolution of two signal processing is the most commonly used basic arithmetic, they relate to the signal and system analysis and synthesis of the wide range of signal processing field. DFT actually convolution and interoperability between contact : DFT into convolution can be achieved in many other algorithms, If relevant, filtering and spectral estimation could be achieved as DFT, DFT into convolution can be achieved.
Date
: 2026-01-03
Size
: 3kb
User
:
深蓝
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.