Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - shortest path in map
Search - shortest path in map - List
DL : 0
1、 图的存储结构的定义和图的创建 图的种类有:有向图、无向图、有向网、无向网。 图的存储结构可采用:邻接矩阵、邻接表。 要求:分别给出邻接矩阵和邻接表在某一种图上的创建算法 2、 图的遍历:非递归的深度优先搜索算法、广度优先搜索算法。 3、 图的深度遍历的应用:求无向连通图中的关节点(教材P177-178,算法7.10和7.11) 4、 图的广度遍历的应用:给定图G,输出从顶点v0到其余每个顶点的最短路径,要求输出各路径中的顶点信息。 -1, map storage structure definition and graph types to create graph: directed graph, undirected graph, to the network without the network. Map storage structure can be: adjacency matrix, adjacency table. Requirements: adjacency matrix is given, respectively, and adjacent table in a certain kind of map creation algorithm 2, Graph Traversal: Non-recursive depth-first search algorithms, breadth-first search algorithm. 3, graph traversal depth of applications: for undirected connected graph of the joint points (textbooks P177-178, Algorithm 7.10 and 7.11) 4, Fig traverse the breadth of applications: a given graph G, the output from vertex v0 to The rest of each vertex of the shortest path requires the output of the vertex of the path information.
Date : 2026-01-02 Size : 6kb User : mhb

DL : 0
设计一个校园导游咨询程序,对来访的客人提供各种信息查询服务。 基本要求: (1)设计校园平面图,所含景点不少于10个,以图中顶点表示校园内各景点,存放景点名称、代号、简介等信息,以边表示路径,存放路径长度等相关信息。 (2)为来访客人提供图中任意景点相关信息的查询。 (3)为来访客人提供图中任意景点的问路查询,即查询任意两个景点之间的一条最短路径。 (注:程序应求得图中任意两个顶点的最短路径,并存储输出。)-To design a campus tour guide the consultation process, visitors, provide information inquiry service. The basic requirements: (1) the design of the campus plan, which contain not less than 10 scenic spots in order to map the campus of Vertex, said the various scenic spots, storage spots name, code-named, briefings and other information in order to edge that path, the path length of storage and other related information . (2) for the visitors to provide map-related information arbitrary attractions inquiries. (3) For the visitors to provide map arbitrary attractions inquiries ask for directions, or inquiries between any two spots of a shortest path. (Note: The procedure should be to achieve any two vertices map the shortest path, and store the output.)
Date : 2026-01-02 Size : 1kb User : laimincai

DL : 0
通过对图的应用,建立一套交通网络图,实现对求单源最短路径,任意两个城市间的最短路径的查询. 首先根据邻接矩阵和图的知识建立交通网络图,顶点信息存储城市道路信息,由图的最短路径查询城市间的最短道路,输出到达路径。 -Through the diagram, the establishment of a transportation network map, to achieve for single-source shortest path between any two cities in the shortest path inquiries. First of all, the basis of adjacency matrix and map knowledge to establish the transport network maps, information storage vertex of Urban Roads information, by the shortest path map query the shortest inter-city roads, to reach the path of the output.
Date : 2026-01-02 Size : 1kb User : 吕璐

DL : 0
图的算法的基本训练 1、 图的存储结构的定义和图的创建 图的种类有:有向图、无向图、有向网、无向网。 图的存储结构可采用:邻接矩阵、邻接表。 要求:分别给出邻接矩阵和邻接表在某一种图上的创建算法 2、 图的遍历:非递归的深度优先搜索算法、广度优先搜索算法。 3、 图的深度遍历的应用:求无向连通图中的关节点(教材P177-178,算法7.10和7.11) 4、 图的广度遍历的应用:给定图G,输出从顶点v0到其余每个顶点的最短路径,要求输出各路径中的顶点信息。 -Map of the basic training algorithm 1 and the storage structure of the definition and plans to create the types of plans are: directed graph, undirected graph, to the network, no to the network. Map storage structure can be: adjacency matrix, the adjacent table. Requirements: adjacency matrix is given, respectively, and adjacent table in a certain kind of map creation algorithm 2, graph traversal: Non-recursive depth-first search algorithm, breadth-first search algorithm. 3, graph traversal depth of applications: for Undirected connected graph of the key points (teaching P177-178, Algorithm 7.10 and 7.11) 4, Fig traverse the breadth of applications: a given graph G, the output from the vertex v0 to The rest of each vertex of the shortest path, the path of the output requirements of the vertex information.
Date : 2026-01-02 Size : 7kb User : bueaty

DL : 0
该问题为单元最短路经问题,求出一个有向图中两点之间权值最小的路径。 Dijkstra算法要求有向图中没有权值为负的边,有向图的信息由一个邻接表来表示,另外对每个顶点都设置一个属性d[v],描述从源点到v的最短路经上权值的上界。算法中设置一个顶点集合S,反复选择具有最短路经估计的顶点u∈V-S,并将u加入S中,算法中还用到了顶点的最小优先队列,排序关键字为顶点的d值。-The issue of the shortest path problem as a unit, find a directed graph between two points of the path of minimum weight. Dijkstra algorithm requires no power to map the edge value is negative, the information to the map by an adjacency list to represent an additional set of each vertex is an attribute d [v], described from the source point to the most short-circuit v on the right by the upper bound value. Algorithm to set up a vertex set S, repeatedly choose the shortest path with the vertex is estimated u ∈ VS, will u join the S, the algorithm is also used in the vertex of the smallest priority queues, sorting for the vertex of the d keyword value.
Date : 2026-01-02 Size : 6kb User :

DL : 0
在矩阵储存结构下,求图的最短路径,在VC++6.0上运行正常-Stored in the matrix structure, and the shortest path map in VC++6.0 run on normal
Date : 2026-01-02 Size : 21kb User : 暗暗

本课程设计的内容为“校园导航”,校园平面图中取大学的11个常去地点,其略图如图1,图中已标出主要路线,各路线的长度如表1中所示。任务定义:找出从任意场所到达另一场所的最佳路径(最短路径)。显然要解决这一问题要用“邻接矩阵”来存储各点间的距离,然后用Dijkstra求出最短路径。-The content of the curriculum design for the " Campus Map" plan of the campus from the University of locations frequented by 11, the sketch map in Figure 1, the figure has marked the main line, the length of the line as shown in Table 1. The definition of tasks: to find out from any place to another place to reach the best path (shortest path). To solve this problem is obviously the word " adjacency matrix" to store the distance between the points, and then find the shortest path with Dijkstra.
Date : 2026-01-02 Size : 86kb User : 猫猫

DL : 0
用Dijkstra 算法实现最短路径求解,其中以自己假定的几个点组成的小网络图为基础。-Using Dijkstra shortest path algorithm for solving, in which a number of assumptions in their own points based on a small network map.
Date : 2026-01-02 Size : 2kb User : 刘芳

在给定地图中寻找两点最短路径,在VC++环境编译通过!-Given map to find the shortest path in VC++ and compiled by
Date : 2026-01-02 Size : 5.52mb User : 刘勇

DL : 0
多段图问题的动态规划算法与实现 功能:求源点到汇点的最短路径及决策过程。 要求:用向前处理和向后处理方法分别对给出的数据,进行求解(注意在文档中画出多段图)。给出复杂性分析。 输入:多段图的段数,顶点数,以及每条边的权重。 输出:多段图的最短路径和决策过程。 -Many of the map of the dynamic programming algorithm and implementation features: seeking the source point to the Meeting Point of the shortest path and the decision-making process. Requirements: forward and backward approach given data to solve (Note that in the document to draw more of the map). Given the complexity of the analysis. Input: Multi-segment, the number of vertices, and the weight of each edge. Output: the shortest path and the decision-making process more of the map.
Date : 2026-01-02 Size : 16kb User : missli

本演示程序中,设校园的平面图是一个无向网,顶点和边均含有相关信息,以图中顶点表示校内各景点,存放景点名称、代号、简介等信息;以边表示路径,存放路径长度等相关信息,为来访客人提供图中任意景点的相关信息查询,任意景点的问路查询,即查询任意两个景点之间的一条最短的简单路径。 -This demo program, set up campus plan is an undirected network, vertices and edges contain relevant information, in order to map the vertex campus sites, storage of interest, code, profiles and other information Edge said path storage path length and other related information, provide visitors an arbitrary graph query information on attractions, attractions ask any query, that query between any two points a shortest simple path.
Date : 2026-01-02 Size : 4kb User : 张妍

floyd knapsack Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。 背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。-floyd knapsack Floyd-Warshall algorithm (Floyd-Warshall algorithm) is an algorithm to solve the shortest path between any two points can correctly handle have the shortest path to the map or negative weights, but also be used to calculate the transitive closure of a directed graph package. Floyd-Warshall time complexity of the algorithm is O (N3), space complexity is O (N2). Knapsack problem (Knapsack problem) is NP-complete optimization of a composition. The problem can be described as follows: given a set of items, each item has its own weight and price, for a limited total weight, how we choose to make the total price of the most goods. The name comes the question of how to choose the most suitable place objects in a given backpack.
Date : 2026-01-02 Size : 2kb User : 贺敏

DL : 0
兰州道路交通网络信息查询。设计一个简单的能够实现兰州道路交通网络信息查询功能的系统。兰州道路交通网采用邻接矩阵(或邻接表)表示,包括道路交通网邻接矩阵(或邻接表)的建立、路径(或时间)的查询、最短路径(或最短时间)的查找、显示输出等功能;兰州道路交通网中顶点表示地名、图上的弧表示两地之间有路径存在、弧上的权值表示两地之间的距离(或时间)(Information query of road traffic network in Lanzhou. Design a simple system that can realize the information query function of Lanzhou road traffic network. Lanzhou road traffic network using the adjacency matrix (or adjacency list) said that the road transport network including the adjacency matrix (or adjacency list) the establishment of the path (or time) of the query, the shortest path (or shortest time) search, display and output function; Lanzhou road traffic network vertices in the map, place names the said arc path exists, the arc weights that the distance between the two between the two (or time))
Date : 2026-01-02 Size : 622kb User : windy~girl

用Dijkstra算法求图中最短距离。从文件读入一个有向正权图(n个结点,m条边)的权矩阵表示,输出这个图中某一结点到其余各结点的最短路径长度。(Use Dijkstra agorithm to solve shortest path in map)
Date : 2026-01-02 Size : 51kb User : zzzsssyyy

DL : 0
现有一个景区,景区里面有若干个景点。现欲开发景区信息管理系统,对景点的信息进行管理。使用图的数据结构来保存景区景点信息,为用户提供创建图、查询景点信息、旅游景点导航、搜索最短路径、铺设电路规划等功能。 使用C++语言,通过对景区信息管理系统的四次迭代开发,实现以下主要学习目标: 1)掌握图的定义和图的存储结构,图的创建方法及其应用 2)掌握图的两种遍历方法及其应用 3)掌握迪杰特斯拉(Dijkstra)算法及其应用 4)理解最小生成树的概念、掌握普里姆(Prim)算法及应用(There is a scenic spot and there are several scenic spots in it. Now we want to develop the information management system of scenic spots and manage the information of scenic spots. The data structure of the map is used to preserve the scenic spots information, providing the users with the functions of creating maps, inquiring the information of the scenic spots, the navigation of the tourist attractions, the shortest path searching, the layout of the layout of the circuit and so on. Using C++ language, the following four main learning objectives are achieved through the development of the scenic area information management system. 1) master the definition and storage structure of graph, create method and application of graph. 2) the two traversing methods of mastering the graph and its application 3) Master Diedje Tesla (Dijkstra) algorithm and its application. 4) understand the concept of minimum spanning tree, master Prim algorithm and application.)
Date : 2026-01-02 Size : 4.88mb User : haimaianbaobao
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.