CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - plane points
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Sub Category
GUI Develop
Windows Kernel
WinSock-NDIS
Driver Develop
ADO-ODBC
GDI-Bitmap
CSharp
.net
Multimedia Develop
Communication
Shell api
ActiveX/DCOM/ATL
IME Develop
ISAPI-IE
Hook api
Screen saver
DirextX
Process-Thread
Console
File Operate
Printing program
Multi Monitor
DNA
Other
Search - plane points - List
[
GDI-Bitmap
]
voronoi
DL : 0
voronoi算法实现平面上的点生成对平面的分割线,使用时先用鼠标在界面上任意点一些点delau按钮即可,本程离在CBuilder5上编译通过.-threshold algorithm plane formation on the point of view of dividing lines, the first use interface with the mouse in arbitrary point on some points delau button, the way from the CBuilder5 compiled through.
Date
: 2008-10-13
Size
: 208.96kb
User
:
阙劲峰
[
GDI-Bitmap
]
12
DL : 1
不错的代码,关于等直线的。 用三角网法绘制等值线,是在三角形的三条边上用线性内插方法寻找等值点,这种方法的机理是将每个三角形看作是空间的一个平面,这就要求在每个三角形的三个顶点内的地貌形态无明显的变化,故此希望将其中最靠近的三个点构成三角形,以符合上述机理,使插补的等值点精度较高,更好的反映地貌的实际形态。符合这些条件的三角形称之为“最佳三角形”-Good code, such as a straight line on the. With a triangular mesh contour map is the edge of the triangle with the three methods of linear interpolation to find the equivalent point, the mechanism of this method is to each triangle as a space plane, which requires each triangles three vertices with no obvious patterns of geomorphic change, it wished to put the three points closest to constitute a triangle in order to comply with the above mechanism, so that the equivalent interpolation points higher accuracy, better reflects the landscape the actual shape. Applying these criteria to the triangle known as the
Date
: 2025-12-29
Size
: 7.18mb
User
:
海嗨
[
GDI-Bitmap
]
Tri_incircles_Viewer_1.01
DL : 0
该源码实现了在平面上任意输入5个点,求出其形成的所有三角形中的最大内切圆。-The realization of the source in the plane indiscriminate importation of five points, to derive all of its triangular shape of the largest inscribed circle.
Date
: 2025-12-29
Size
: 1.93mb
User
:
李青林
[
GDI-Bitmap
]
triTIN
DL : 0
程序生成TIN三角形,根据2D或者3D的离散点生成,分析-This program generates Triangulated Irregular Network, or TIN from scattered points on two-dimensional plane based on Delaunay s triangulation. This data structure allows data to be displayed as three-dimensional surface, or to be used for terrain analysis including contouring and visibility mapping.
Date
: 2025-12-29
Size
: 47kb
User
:
Libz
[
GDI-Bitmap
]
find_center_of_round
DL : 0
任给平面三点,画圆并确定圆心。进行画圆可行性判断。-For any plane three points, and determine the center circle.
Date
: 2025-12-29
Size
: 1kb
User
:
[
GDI-Bitmap
]
Geometry
DL : 0
包含了点的基本运算 1. 平面上两点之间距离 2. 判断两点是否重合 3. 矢量叉乘 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡ 线段及直线的基本运算 1. 点与线段的关系 3 2. 求点到线段所在直线垂线的垂足 3. 点到线段的最近点 4. 点到线段所在直线的距离 5. 点到折线集的最近距离 6. 判断圆是否在多边形内 5 7. 求矢量夹角余弦 5 8. 求线段之间的夹角 5 9. 判断线段是否相交 6 10.判断线段是否相交但不交在端点处 6 11.求线段所在直线的方程 6 12.求直线的斜率 7 13.求直线的倾斜角 14.求点关于某直线的对称点 15.判断两条直线是否相交及求直线交点 16.判断线段是否相交,如果相交返回交点 -Contains a point of basic computing the distance between two points on a plane 2. Determine whether two points are coincident 3. Vector cross multiplied by 4. Vector dot 25. Judge whether a line segment 26. Seeking a point a little spare rotation coordinates after 27 Find the angle between two vectors (ii) straight line segment and a basic computing. point and the line between 32 Find the point where the straight line to the foot of the perpendicular line 3 Line points to the nearest point 4 points to the straight line distance of 5 points to the recently broken away from six. determine whether the polygon round 57. vector cosine angle 58 Find the angle between the line 59. judge wheth 610 . judge wheth but do not pay at the endpoints 611. seeking the straight line equation 612. linear slope 713. Seeking straight tilt angle of 14 points on a straight-line demand point of symmetry 15. judge two straight lines intersect and find the intersection 16. judge wheth, if the intersection point
Date
: 2025-12-29
Size
: 13kb
User
:
卢凯瑞
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.