CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - k matrix
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Sub Category
GUI Develop
Windows Kernel
WinSock-NDIS
Driver Develop
ADO-ODBC
GDI-Bitmap
CSharp
.net
Multimedia Develop
Communication
Shell api
ActiveX/DCOM/ATL
IME Develop
ISAPI-IE
Hook api
Screen saver
DirextX
Process-Thread
Console
File Operate
Printing program
Multi Monitor
DNA
Other
Search - k matrix - List
[
Windows Develop
]
MCKjisuan
DL : 0
Extraction M.C.K MATRIX of A finite element simply supported beam model for vibration analysis
Date
: 2008-10-13
Size
: 2.02kb
User
:
xuxiaoxia
[
Windows Develop
]
juzen
DL : 0
对于矩阵连乘积的最优计算次序问题,设计算Ai…j ,1≤i≤j≤n,所需的最少数乘次数为m[i,j],原问题的最优值为m[1,n]。 当i=j时,Ai…j=Ai为单一矩阵,无需计算,因此m[i,i]=0,i=1,2,…,n ; 当i<j时,可利用最优子结构性质来计算m[i,j]。事实上,若计算Ai…j的最优次序在Ak和Ak+1之间断开,i≤k<j,则:m[i,j]=m[i,k]+m[k+1,j]+rirk+1rj+1 。 -Even for the matrix product of the calculation of the optimal order problem, the design of operator Ai ... j, 1 ≤ i ≤ j ≤ n, the required number of at least a few by m [i, j], the original problem of optimal values for m [1 , n]. When i = j when, Ai ... j = Ai for a single matrix, without basis, it is m [i, i] = 0, i = 1,2, ..., n when i <j, to be used to sub-optimal structure the nature of computing m [i, j]. In fact, if the calculation of Ai ... j the optimal order in Ak and Ak+ 1 disconnect between, i ≤ k <j, then: m [i, j] = m [i, k]+ M [k+ 1 , j]+ rirk+ 1rj+ 1.
Date
: 2025-12-29
Size
: 1kb
User
:
uhy
[
Windows Develop
]
floy
DL : 0
Floyd算法的基本思想是,从邻接矩阵a开始进行n次迭代,第一次迭代后a[i,j]的值是从vi到vj且中间不经过变化大于1的顶点的最短路径长度;第k次迭代后a[i,j]的值是从vi到vj且中间不经过变化大于k的顶点的最短路径长度 第n次迭代后a[i,j]的值就是从vi到vj的最短路径长度。-Floyd algorithm for the basic idea is that from the adjacency matrix a start n iterations, after the first iteration a [i, j] values are from vi to vj and not through changes in the middle of more than 1 vertex of the shortest path length the first k iterations after a [i, j] values are from vi to vj and not through changes in the middle of the vertex k is greater than the shortest path length of the first n iterations, after a [i, j] value is from vi to vj of the shortest path length.
Date
: 2025-12-29
Size
: 17kb
User
:
陈冰晶
[
Windows Develop
]
MCKjisuan
DL : 0
Extraction M.C.K MATRIX of A finite element simply supported beam model for vibration analysis
Date
: 2025-12-29
Size
: 2kb
User
:
xuxiaoxia
[
Windows Develop
]
encryption
DL : 0
The program takes 3 inputs: 1. A letter of the alphabet that will remain unencoded (e.g. "J") 2. A 5-letter keyword (e.g. "BREAK") 3. A message to be encrypted (e.g. "COMPUTERSCIENCE"). You may assume that it does not contain any spaces or punctuation. To form the code, first create a 5x5 matrix in which the first row is your keyword and the other elements are the remaining letters of the alphabet (minus the unencoded letter): B R E A K C D F G H I L M N O P Q S T U V W X Y Z -Encryption code
Date
: 2025-12-29
Size
: 1kb
User
:
王梓
[
Windows Develop
]
SENSEaliasingmatrix
DL : 0
在SENSE成像中如何将中间图像转化为最终图像,就要用到这个程序-Using specfied sampling vector to generate a 2D aliasing matrix. The sampling vector is a vector of n-entries of either 0 or 1, where 0 indicates no k-space line acquisition and 1 indicates k-space line is acquired in the accelerated scan. For example, a sampling vector of [0 1 0 1 0 1 0 1 0 1] indicate the 2-fold acceleration with 8 phase encoding lines. The aliasing matrix is calculated based on Fourier imaging
Date
: 2025-12-29
Size
: 4kb
User
:
李荣智
[
Windows Develop
]
Penyelesaian-Pers-Non-Linier-Metode-Tabel
DL : 0
int i, j, k,b,n,s,t,r=1 float sum, c float a[12][12] //pengisian matrix printf("Masukkan ordo matriks : ") scanf(" d",&n) printf("masukkan banyak persamaan : ") scanf(" d",&b) for(i=0 i<n i++){ for(j=0 j<b j++){ printf("masukkan nilai matrik baris d kolom d : ",i+1,j+1) scanf(" f",&a[i][j]) }-int i, j, k,b,n,s,t,r=1 float sum, c float a[12][12] //pengisian matrix printf("Masukkan ordo matriks : ") scanf(" d",&n) printf("masukkan banyak persamaan : ") scanf(" d",&b) for(i=0 i<n i++){ for(j=0 j<b j++){ printf("masukkan nilai matrik baris d kolom d : ",i+1,j+1) scanf(" f",&a[i][j]) }
Date
: 2025-12-29
Size
: 1kb
User
:
cranda
[
Windows Develop
]
chengxu3
DL : 0
对一个给定的n阶正整数矩阵,给定一个正整数k,求出矩阵中所有的最长的直线,并且在此直线上的所有元素之和小于等于k。-For a given positive integer matrix of order n, given a positive integer k, find the matrix of the longest line of all, and all the elements on this line and less than equal to k.
Date
: 2025-12-29
Size
: 2kb
User
:
afei
[
Windows Develop
]
plane
DL : 0
!本程序主要用来解决二维平面应力弹性问题(带厚度),在f90上调试通过。 !包含主程序STRESS和三个字程序ELSTMX(KK)、MODIFY、DCMPBD和SLVBD !主程序主要进行基本的输入输出以及最大半带宽的计算,组装总体刚度矩阵计算的应力应变值 !子程序elstmx(kk)计算刚度系数矩阵,生成第kk单元的刚度矩阵k !子程序MODIFY输入节点的集中力,边界节点的位移,对总体刚度矩阵和位移数组和节点力数组作修改 !子程序DEMPBD用高斯消元法将半带宽的矩阵变成上三角阵 !子程序SLVBD为总体矩阵的回代求位移向量-! The program is mainly used to solve the two-dimensional plane stress elasticity problems (with thickness), the f90 debugging through. ! Contains the main STRESS and words program ELSTMX (KK), MODIFY, DCMPBD and SLVBD! Main program for basic input-output and maximum half bandwidth calculation, the overall stiffness matrix assembly calculated stress and strain values! Subroutine elstmx ( kk) calculate the stiffness coefficient matrix to generate a first kk element stiffness matrix k! subroutine MODIFY input node of concentration, the displacement boundary nodes, the overall stiffness matrix and nodal force and displacement array array modified! subroutine DEMPBD using Gaussian elimination element method for the semi-bandwidth matrix becomes upper triangular matrix! subroutine SLVBD overall matrix for the displacement vector DD back intercessions
Date
: 2025-12-29
Size
: 10kb
User
:
54654564
[
Windows Develop
]
PCA
DL : 0
Python实现PCA将数据转化成前K个主成分的伪码大致如下: ''' 减去平均数计算协方差矩阵计算协方差矩阵的特征值和特征向量将特征值从大到小排序保留最大的K个特征(Python PCA data into pseudo code before the K principal components are as follows: the characteristics of 'average minus the covariance matrix to calculate the covariance matrix eigenvalues and eigenvectors. The eigenvalues in descending order retain maximum K features)
Date
: 2025-12-29
Size
: 63kb
User
:
193sd
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.