Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - iteration
Search - iteration - List
Gauss-Seidel 迭代 本程序能处理的方程最大阶数-Gauss - Seidel iteration of this program can handle the largest order equation
Date : 2008-10-13 Size : 1.67kb User : 曹子良

以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任何变化。 -introduced over the DES encryption algorithm process. DES algorithm decryption process is the same, the only difference is that the first iteration used Subkey K15, K14 ,......, second last with K0, the algorithm itself without any change.
Date : 2008-10-13 Size : 14.17kb User : 赵阳

计算方法中的高斯迭代法 C++算法源程序-calculation method of Gaussian iteration algorithm C source
Date : 2008-10-13 Size : 8kb User : 王宝华

一个复杂的迭代运算-iteration of a complex operation.
Date : 2008-10-13 Size : 7.96kb User : 陈鑫

图是用牛顿法求方程z3-1=0的根所得到的“项链”。以上程序采用浮点运算,速度是比较慢的。如果每迭代一次就计算一次距离,则速度会更慢。为了使不同吸引区域有不同的颜色,并且能够表现收敛速度,必须做更多的距离计算,但得到的图形也更美丽。特别是将分界处的“项链”放大来看,会得到精致的结构。-Fig Newton method is used Equation z3-1 = 0 has been the root of the "necklace." The procedure is used floating-point operations, speed is relatively slow. If every iteration on a calculated distance, it would grow more slowly. In order to attract different regions have different colors, and be able to demonstrate the convergence rate and must do more distance, but the graphics are more beautiful. In particular, the boundaries of the "necklace" to enlarge it, will be refined structure.
Date : 2008-10-13 Size : 2.04kb User : 刁轩

用途:用向量(稀疏存储)形式的Gauss-Seidel迭代解线性方程组Ax=b % 格式: x=spgs(A,b,x0,e,N),A为系数矩阵,b为右端向量,x返回解向量。 % x0为初值向量(默认原点),e为精度(默认1e-4),设置迭代次数上限以防发散(默 % 认500)。 -purposes : with Vector (sparse storage) form of Gauss - Seidel iterative solution of linear equations Ax = b% Format : spgs x = (A, b, x0, e, N), A coefficient matrix, b subguadratic vector, returning x vector. X0% for initial vector (the default origin), e-precision (default 1e-4), iteration ceiling set to prevent divergence (mime identified 500%).
Date : 2008-10-13 Size : 858byte User : 王志波

用 Newton迭代求f(x)=1/3*x^3-x=0的根的源程序-with Newton iteration f (x) = 1 / 3 * x ^ 3-x = 0 the root of the source
Date : 2008-10-13 Size : 843byte User : lin

iteration algrithm for solving matrix equations
Date : 2008-10-13 Size : 46.75kb User : luguizhen

用 Newton迭代求f(x)=1/3*x^3-x=0的根的源程序-with Newton iteration f (x) = 1/3* x ^ 3-x = 0 the root of the source
Date : 2025-12-31 Size : 1kb User : lin

Gauss-Seidel 迭代 本程序能处理的方程最大阶数-Gauss- Seidel iteration of this program can handle the largest order equation
Date : 2025-12-31 Size : 1kb User : 曹子良

计算方法中的高斯迭代法 C++算法源程序-calculation method of Gaussian iteration algorithm C source
Date : 2025-12-31 Size : 234kb User : 王宝华

一个复杂的迭代运算-iteration of a complex operation.
Date : 2025-12-31 Size : 8kb User : 陈鑫

图是用牛顿法求方程z3-1=0的根所得到的“项链”。以上程序采用浮点运算,速度是比较慢的。如果每迭代一次就计算一次距离,则速度会更慢。为了使不同吸引区域有不同的颜色,并且能够表现收敛速度,必须做更多的距离计算,但得到的图形也更美丽。特别是将分界处的“项链”放大来看,会得到精致的结构。-Fig Newton method is used Equation z3-1 = 0 has been the root of the "necklace." The procedure is used floating-point operations, speed is relatively slow. If every iteration on a calculated distance, it would grow more slowly. In order to attract different regions have different colors, and be able to demonstrate the convergence rate and must do more distance, but the graphics are more beautiful. In particular, the boundaries of the "necklace" to enlarge it, will be refined structure.
Date : 2025-12-31 Size : 2kb User : 刁轩

用途:用向量(稀疏存储)形式的Gauss-Seidel迭代解线性方程组Ax=b % 格式: x=spgs(A,b,x0,e,N),A为系数矩阵,b为右端向量,x返回解向量。 % x0为初值向量(默认原点),e为精度(默认1e-4),设置迭代次数上限以防发散(默 % 认500)。 -purposes : with Vector (sparse storage) form of Gauss- Seidel iterative solution of linear equations Ax = b% Format : spgs x = (A, b, x0, e, N), A coefficient matrix, b subguadratic vector, returning x vector. X0% for initial vector (the default origin), e-precision (default 1e-4), iteration ceiling set to prevent divergence (mime identified 500%).
Date : 2025-12-31 Size : 1kb User : 王志波

Floyd算法的基本思想是,从邻接矩阵a开始进行n次迭代,第一次迭代后a[i,j]的值是从vi到vj且中间不经过变化大于1的顶点的最短路径长度;第k次迭代后a[i,j]的值是从vi到vj且中间不经过变化大于k的顶点的最短路径长度 第n次迭代后a[i,j]的值就是从vi到vj的最短路径长度。-Floyd algorithm for the basic idea is that from the adjacency matrix a start n iterations, after the first iteration a [i, j] values are from vi to vj and not through changes in the middle of more than 1 vertex of the shortest path length the first k iterations after a [i, j] values are from vi to vj and not through changes in the middle of the vertex k is greater than the shortest path length of the first n iterations, after a [i, j] value is from vi to vj of the shortest path length.
Date : 2025-12-31 Size : 17kb User : 陈冰晶

* 容器 * 注意掌握的内容 * * 如下图: * set ---HashSet TreeSet ----------装入的对象没顺序并且不能equals字符串比较 * Collection--| 使用链表 使用数组 |--一个一个往里装 * list ---LinkedList,ArrayList ------装入的对象有顺序可以equals比较 * * Map -------HashMap TreeSet---------------------两个两个往里装 * --定义了键key value值 映射对 的方法 * Iterator---对 collection 进行迭代的迭代器,相当于 指针-* Containers* Note to master the contents of** the following graph:* set-HashSet TreeSet object loaded and no order should not equals string comparison* Collection | the use of an array list | fitted inside one by one* list-LinkedList, ArrayList loaded into the object can have the order equals comparison** Map-HashMap TreeSet- two inside two loaded*- defines the key value key value mapping for the method* Iterator--- iteration of collection iterators, equivalent to pointer
Date : 2025-12-31 Size : 4kb User : 彷徨

fcm是模糊c均值聚类算法,确定聚类中心以后,通过循环迭代,确定最佳聚类中心-FCM is a fuzzy c means clustering algorithm to determine the cluster center, the adoption cycle of iteration, to determine the optimal cluster center
Date : 2025-12-31 Size : 6kb User : zhourl

iteration algrithm for solving matrix equations
Date : 2025-12-31 Size : 46kb User : luguizhen

this code is using for simulate the method of fixed point iteration
Date : 2025-12-31 Size : 1kb User : nedal

GAUSS SEIDEL ITERATION METHOD
Date : 2025-12-31 Size : 355kb User : mehrdad nickaeen
« 12 3 4 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.