Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - ant colony optimize
Search - ant colony optimize - List
DL : 1
利用蚁群优化算法来优化阵列天线的阵源个数,达到优化天线性能的目的。-Ant colony optimization algorithm to optimize the array antenna array number of sources, to achieve the purpose of optimizing the performance of the antenna.
Date : Size : 450kb User : 康健

蚁群算法优化连续函数,值得学习学习 带注释的-Ant colony algorithm to optimize continuous functions, it is worth learning learning annotated
Date : Size : 1kb User : zhaoyuanyuan

蚁群算法优化BP神经网络,已运行,良好,简单-Ant colony algorithm to optimize BP neural network has been running good, simple
Date : Size : 46kb User : zhaoyuanyuan

DL : 0
最优化代码的开发,蚁群算法的实现以及应用于解决TSP问题-Optimize the development of the code, ant colony algorithm implementation and applied to solve the TSP
Date : Size : 78kb User : 寂寞的CODER

遗传算法优化B P神经网络的目的是通过遗传算法得到更好的网络初始权值和阈值, 其 基本思想就是用个体代表网络的初始权值和阈值、 个体值初始化的B P神经网络的预测误差作为该个体的适应度值, 通过选择、 交叉、 变异操作寻找最优个体, 即最优的B P神经网络初始权值。除了遗传算法之外, 还可以采用粒子群算法、 蚁群算法等优化B P神经网络初始权值。-Genetic algorithm to optimize BP neural network is designed by means of genetic algorithms get better network initial weights and thresholds, the basic idea is to use individual represents the network' s initial weights and thresholds, the individual values ​ ​ initialized BP neural network prediction error as the individual' s fitness value, through selection, crossover and mutation to find the optimal individual, ie the optimal BP neural network initial weights. In addition to genetic algorithms, you can also use particle swarm optimization, ant colony algorithm to optimize BP neural network initial weights.
Date : Size : 51kb User : 吴江

DL : 0
除了蚁群算法,可用于PID参数优化的智能算法还有很多,比如遗传算法、模拟退火算法、粒子群算法、人工鱼群算法,等等。-In addition to the ant colony algorithm can be used to optimize the PID parameters, there are many intelligent algorithms, such as genetic algorithms, simulated annealing algorithm, particle swarm optimization, AFSA, and so on.
Date : Size : 1kb User : 昊轩

DL : 0
蚁群算法是当前研究非常火热的一种智能算法,下面的蚁群算法程序专门用于求解TSP问题,我们经过仿真检验,发现此程序的优化效率和鲁棒性都非常好。 function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)-Ant colony algorithm is very hot current research an intelligent algorithm, the following ant colony algorithm for solving TSP problem specifically, we tested through simulation and found to optimize the efficiency and robustness of this program are very good. function [R_best, L_best, L_ave, Shortest_Route, Shortest_Length] = ACATSP (C, NC_max, m, Alpha, Beta, Rho, Q)
Date : Size : 2kb User : 冯丁

蚁群算法优化模糊c均值聚类,非本人原创,大家共同学习-Ant colony algorithm to optimize fuzzy c-means clustering, non-my original, we learn together
Date : Size : 4kb User : 杨学伟

faruto大神改编的的SVM工具箱!内部拥有智能算法优化参数,比如蚁群算法-faruto Great God adaptation of SVM toolbox! Interior has a smart algorithm to optimize parameters, such as ant colony algorithm
Date : Size : 1.26mb User : 集合

智能算法的优化集合,包括免疫,蚁群等一些智能算法-Intelligent algorithm to optimize the collection, including immunization, and some intelligent ant colony algorithm
Date : Size : 59kb User : zhangjiajia

基于蚁群算法的聚类算法以及改进的代码,实现聚类算法的优化-Clustering algorithm based on ant colony algorithm and improved code, optimize clustering algorithm
Date : Size : 6kb User :

蚁群算法是当前研究非常火热的一种智能算法,下面的蚁群算法程序专门用于求解TSP问题,此程序由GreenSim团队于2006年初完成,最初公开发表于研学论坛,我们经过仿真检验,发现此程序的优化效率和鲁棒性都非常好。-Ant colony algorithm is currently very hot research an intelligent algorithm, the following special procedures ant colony algorithm for solving TSP problem, the program completed in early 2006 by a team GreenSim initial research study published in the forum, we have gone through simulation tests found to optimize the efficiency and robustness of this program are very good.
Date : Size : 2kb User : 刘传管

DL : 0
用于全局优化的蚁群算法,可优化其他算法,用于尊求全局最优解等等,数值计算-For the global optimization of the ant colony algorithm, you can optimize other algorithms
Date : Size : 4.38mb User : 石岩

用MATLAB实现复杂环境移动机器人路径规划算法的研究,分别采用了A星算法,迪杰斯特拉算法,蚁群算法以及蚁群寻径迪杰斯特拉优化路径的混合算法,并通过仿真进行验证。(Research and implementation of complex environment of mobile robot path planning algorithm with MATLAB, respectively, using the A star algorithm, Dijkstra algorithm, ant colony algorithm and ant colony optimization hybrid algorithm to optimize the path of Dijkstra size, and verified by simulation.)
Date : Size : 117kb User : 窗外阴雨凉

路径优化蚁群算法matlab程序‘ 在求解该问题的蚂蚁算法中,每只蚂蚁是一个独立的用于构造路线的过程,若干蚂蚁过程之间通过自适应的信息素值来交换信息,合作求解,并不断优化。(Path optimization, ant colony algorithm, matlab program. In the ant algorithm for solving this problem, each ant is an independent procedure for constructing the route, between a number of ants by adaptive pheromone to exchange information, cooperate to solve and optimize.)
Date : Size : 2kb User : hhhhhhyy

利用蚁群算法实现优化旅行商问题,一定可以运行(The use of ant colony algorithm to optimize the traveling salesman problem, will be able to run)
Date : Size : 6kb User : 文文儿

matlab写的蚁群算法,超级经典,不懂得可以学习学习,懂得可以研究下优化。(The ant colony algorithm written by MATLAB, super classic, does not know how to learn and learn, and knows how to optimize it.)
Date : Size : 26kb User : 韩达哒

DL : 0
基于发现蚁群算法优化神经网络是利用蚁群算法在解空间寻找出一组最优的权值和阈值,然后将这一组解带回到神经网络进行细致优化,从而得到最好的权值和阈值。(Found that the ant colony algorithm to optimize the neural network based on Ant Colony Algorithm in the solution space to find a set of optimal weights and threshold based on, and then the group returned to the neural network with detailed optimization, the best weight and threshold to get. But this does not fundamentally solve the disadvantage that the BP algorithm is easy to fall into the local minimum, because he hat algorithm will ensure that he gets the best result? In particular, the prediction is not t)
Date : Size : 769kb User : 跃跃欲

DL : 0
用蚁群算法优化bp神经网络,增加预测精度(Using ant colony algorithm to optimize BP neural network and increase prediction accuracy)
Date : Size : 2kb User : 浮沉yjj

利用蚁群算法对pid进行参数优化,里面有源代码和一些代码的注释(Using ant colony algorithm to optimize the parameters of pid, there are source code and some code annotations.)
Date : Size : 5kb User : zcw22
« 1 23 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.